login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A329982 a(1) = 0, and for n > 0, a(n+1) = k^2 - a(n) where k is the number of terms equal to a(n) among the first n terms. 3
0, 1, 0, 4, -3, 4, 0, 9, -8, 9, -5, 6, -5, 9, 0, 16, -15, 16, -12, 13, -12, 16, -7, 8, -7, 11, -10, 11, -7, 16, 0, 25, -24, 25, -21, 22, -21, 25, -16, 17, -16, 20, -19, 20, -16, 25, -9, 10, -9, 13, -9, 18, -17, 18, -14, 15, -14, 18, -9, 25, 0, 36, -35, 36, -32 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
In other words, for n > 0, a(n+1) = o(n)^2 - a(n) where o is the ordinal transform of the sequence.
LINKS
EXAMPLE
The first terms, alongside their ordinal transform, are:
n a(n) o(n)
-- ---- ----
1 0 1
2 1 1
3 0 2
4 4 1
5 -3 1
6 4 2
7 0 3
8 9 1
9 -8 1
10 9 2
PROG
(PARI) for (n=1, #(a=vector(65)), print1 (a[n]=if (n>1, sum(k=1, n-1, a[k]==a[n-1])^2-a[n-1])", "))
CROSSREFS
See A329981 for similar sequences.
Sequence in context: A255257 A306769 A336031 * A243149 A048156 A070431
KEYWORD
sign,look
AUTHOR
Rémy Sigrist, Nov 26 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 14:25 EDT 2024. Contains 375976 sequences. (Running on oeis4.)