login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A329985 a(1) = 1 and for n > 0, a(n+1) = a(k) - a(n) where k is the number of terms equal to a(n) among the first n terms. 8
1, 0, 1, -1, 2, -1, 1, 0, 0, 1, -2, 3, -2, 2, -2, 3, -3, 4, -3, 3, -2, 1, 1, -2, 4, -4, 5, -4, 4, -3, 4, -5, 6, -5, 5, -5, 6, -6, 7, -6, 6, -5, 4, -2, 1, 0, -1, 2, -1, 0, 2, -3, 2, 0, -1, 3, -4, 5, -4, 3, -1, 0, 1, -1, 2, -3, 5, -6, 7, -7, 8, -7, 7, -6, 5, -3 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
In other words, for n > 0, a(n+1) = a(o(n)) - a(n) where o is the ordinal transform of the sequence.
The sequence has interesting graphical features (see plot in Links section).
LINKS
N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
EXAMPLE
The first terms, alongside their ordinal transform, are:
n a(n) o(n)
-- ---- ----
1 1 1
2 0 1
3 1 2
4 -1 1
5 2 1
6 -1 2
7 1 3
8 0 2
9 0 3
10 1 4
MATHEMATICA
A={1}; For[n=2, n<=76, n++, A=Append[A, Part[A, Count[Table[Part[A, i], {i, 1, n-1}], Part[A, n-1]]]-Part[A, n-1]]]; A (* Joshua Oliver, Nov 26 2019 *)
Nest[Append[#, #[[Count[#, #[[-1]] ] ]] - #[[-1]]] &, {1}, 75] (* Michael De Vlieger, Dec 01 2019 *)
PROG
(PARI) for (n=1, #(a=vector(76)), print1 (a[n]=if (n==1, 1, a[sum(k=1, n-1, a[k]==a[n-1])]-a[n-1])", "))
CROSSREFS
o(n) is A330334.
See A329981 for similar sequences.
Sequence in context: A277349 A078807 A208249 * A029422 A351356 A152800
KEYWORD
sign,look
AUTHOR
Rémy Sigrist, Nov 26 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 8 13:51 EDT 2024. Contains 375753 sequences. (Running on oeis4.)