login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152800
Irregular triangle read by rows: the q-analog of the Euler numbers; expansion of the arithmetic inverse of the q-cosine of x.
6
1, 1, 0, 1, 2, 1, 1, 0, 0, 1, 3, 5, 8, 10, 10, 9, 7, 5, 2, 1, 0, 0, 0, 1, 4, 10, 21, 36, 55, 78, 101, 122, 138, 145, 143, 134, 117, 95, 72, 50, 32, 18, 9, 3, 1, 0, 0, 0, 0, 1, 5, 16, 41, 87, 164, 283, 452, 679, 967, 1311, 1700, 2118, 2540, 2937, 3282, 3546, 3706, 3751, 3676, 3487
OFFSET
0,5
COMMENTS
The q-cosine is cos_q(x,q) = Sum_{n>=0} (-1)^n*x^(2n)/faq(2n,q) and faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1) is the q-factorial of n.
LINKS
M. M. Graev, Einstein equations for invariant metrics on flag spaces and their Newton polytopes, Transactions of the Moscow Mathematical Society, 2014, pp. 13-68. Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva, tom 75 (2014), vypusk 1.
Eric Weisstein, q-Cosine Function from MathWorld.
Eric Weisstein, q-Factorial from MathWorld.
FORMULA
G.f.: 1/cos_q(x,q) = Sum_{n>=0} Sum_{k=0..2n(n-1)} T(n,k)*q^k*x^(2n)/faq(2n,q).
G.f.: 1/cos(x) = Sum_{n>=1} Sum_{k=0..2n(n-1)} T(n,k)*x^(2n)/(2n)!.
Sum_{k=0..2n(n-1)} T(n,k) = A000364(n).
Sum_{k=0..2n(n-1)} T(n,k)*(-1)^k = 1 for n>=0.
Sum_{k=0..2n(n-1)} T(n,k)*I^k = (-1)^[n/2] for n>=0 where I^2=-1.
Sum_{k=0..2n(n-1)} T(n,k)*exp(2*Pi*I*k/n) = 1 for n>0.
EXAMPLE
Nonzero coefficients in row n range from x^(n-1) to x^(2n(n-1)) for n>0.
Triangle begins:
1;
1;
0,1,2,1,1;
0,0,1,3,5,8,10,10,9,7,5,2,1;
0,0,0,1,4,10,21,36,55,78,101,122,138,145,143,134,117,95,72,50,32,18,9,3,1;
0,0,0,0,1,5,16,41,87,164,283,452,679,967,1311,1700,2118,2540,2937,3282,3546,3706,3751,3676,3487,3202,2842,2436,2014,1602,1223,894,622,409,253,145,76,35,14,4,1;
...
Explicit expansion of g.f.:
1/cos_q(x,q) = 1 + x^2/faq(2,q) + x^4*(q + 2*q^2 + q^3 + q^4)/faq(4,q) +
x^6*(q^2 + 3*q^3 + 5*q^4 + 8*q^5 + 10*q^6 + 10*q^7 + 9*q^8 + 7*q^9 + 5*q^10 + 2*q^11 + q^12)/faq(6,q) +
x^8*(q^3 + 4*q^4 + 10*q^5 + 21*q^6 + 36*q^7 + 55*q^8 + 78*q^9 + 101*q^10 + 122*q^11 + 138*q^12 + 145*q^13 + 143*q^14 + 134*q^15 + 117*q^16 + 95*q^17 + 72*q^18 + 50*q^19 + 32*q^20 + 18*q^21 + 9*q^22 + 3*q^23 + q^24)/faq(8,q) +...
PROG
(PARI) {T(n, k)=polcoeff(polcoeff(1/sum(m=0, n, (-1)^m*x^(2*m)/prod(j=1, 2*m, (q^j-1)/(q-1))+x*O(x^(2*n+1))), 2*n, x)*prod(j=1, 2*n, (q^j-1)/(q-1)), k, q)}
for(n=0, 8, for(k=0, 2*n*(n-1), print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A000364 (row sums=Euler numbers); A152801, A152802, A152803, A152804.
Sequence in context: A329985 A029422 A351356 * A223730 A353129 A117452
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Dec 26 2008
STATUS
approved