login
A329987
Beatty sequence for the number x satisfying 1/x + 1/2^x = 1.
3
1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 52, 53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 78, 79, 81, 82, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100
OFFSET
1,2
COMMENTS
Let x be the solution of 1/x + 1/2^x = 1. Then (floor(n x)) and (floor(n 2^x)) are a pair of Beatty sequences; i.e., every positive integer is in exactly one of the sequences. See the Guide to related sequences at A329825.
FORMULA
a(n) = floor(n x), where x = 1.52980838275... is the constant in A329986.
MATHEMATICA
r = x /. FindRoot[1/x + 1/2^x == 1, {x, 1, 10}, WorkingPrecision -> 210]
RealDigits[r][[1]] (* A329986 *)
Table[Floor[n*r], {n, 1, 250}] (* A329987 *)
Table[Floor[n*2^r], {n, 1, 250}] (* A329988 *)
CROSSREFS
Cf. A329825, A329986, A329988 (complement).
Sequence in context: A032766 A380408 A189935 * A329962 A258574 A064717
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jan 02 2020
STATUS
approved