login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/((1 - x)*(2 - theta_2(sqrt(x))/(2*x^(1/8)))), where theta_2() is the Jacobi theta function.
4

%I #8 Apr 30 2018 08:43:36

%S 1,2,3,5,8,12,19,30,46,71,111,172,266,413,640,991,1537,2383,3692,5722,

%T 8869,13745,21303,33018,51172,79308,122917,190503,295251,457597,

%U 709207,1099165,1703546,2640245,4091988,6341979,9829132,15233702,23609994,36592010,56712212,87895562

%N Expansion of 1/((1 - x)*(2 - theta_2(sqrt(x))/(2*x^(1/8)))), where theta_2() is the Jacobi theta function.

%C Partial sums of A023361.

%H Alois P. Heinz, <a href="/A303668/b303668.txt">Table of n, a(n) for n = 0..5254</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>

%H <a href="/index/Com#comp">Index entries for sequences related to compositions</a>

%F G.f.: 1/((1 - x)*(1 - Sum_{k>=1} x^(k*(k+1)/2))).

%p b:= proc(n) option remember; `if`(n=0, 1,

%p add(`if`(issqr(8*j+1), b(n-j), 0), j=1..n))

%p end:

%p a:= proc(n) option remember;

%p `if`(n<0, 0, b(n)+a(n-1))

%p end:

%p seq(a(n), n=0..50); # _Alois P. Heinz_, Apr 28 2018

%t nmax = 41; CoefficientList[Series[1/((1 - x) (2 - EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8)))), {x, 0, nmax}], x]

%t nmax = 41; CoefficientList[Series[1/((1 - x) (1 - Sum[x^(k (k + 1)/2), {k, 1, nmax}])), {x, 0, nmax}], x]

%t a[0] = 1; a[n_] := a[n] = Sum[SquaresR[1, 8 k + 1] a[n - k], {k, 1, n}]/2; Accumulate[Table[a[n], {n, 0, 41}]]

%Y Cf. A000217, A010054, A023361, A302835, A303667.

%K nonn

%O 0,2

%A _Ilya Gutkovskiy_, Apr 28 2018