login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A219282 Number of superdiagonal bargraphs with area n. 32
1, 1, 1, 2, 3, 4, 6, 9, 13, 18, 25, 35, 49, 68, 93, 126, 170, 229, 308, 413, 551, 731, 965, 1269, 1664, 2177, 2842, 3701, 4806, 6222, 8031, 10337, 13272, 17003, 21740, 27745, 35343, 44936, 57021, 72213, 91274, 115149, 145010, 182309, 228841, 286819, 358964, 448614, 559857, 697694 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Number of compositions n = p(1) + p(2) + ... + p(m) such that p(k) >= k (superdiagonal compositions), see example. - Joerg Arndt, Dec 19 2012
Number of (n-2)-bit binary strings in which the runs of ones are successively (1, 11, 111, 1111, ...), as in for example 00101100111011110011111000... To turn such a string into a composition, add 'X0 to the start of the empty string and the mark ' to the end, replace the runs 1, 11, 111,... with '01, '011, '0111, ... then consider the distances between the marks. - Andrew Woods, Jan 02 2015
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 201 terms from Vincenzo Librandi)
Margaret Archibald, Aubrey Blecher, Arnold Knopfmacher, and Stephan Wagner, Subdiagonal and superdiagonal compositions, Art Disc. Appl. Math. (2024). See p. 10.
Emeric Deutsch, Emanuele Munarini, and Simone Rinaldi, Skew Dyck paths, area, and superdiagonal bargraphs, Journal of Statistical Planning and Inference, Vol. 140, Issue 6, June 2010, pp. 1550-1562.
FORMULA
G.f.: Sum_{n>=0} q^(n*(n+1)/2) / (1-q)^n.
a(n) = Sum_{k=0..floor((sqrt(8*n+1)-3)/2)} C(n-1-C(k+1,2),k), for n >= 1.
EXAMPLE
From Joerg Arndt, Dec 19 2012: (Start)
The a(9) = 18 compositions 9 = p(1) + p(2) + ... + p(m) such that p(k) >= k are
[ 1] [ 1 2 6 ]
[ 2] [ 1 3 5 ]
[ 3] [ 1 4 4 ]
[ 4] [ 1 5 3 ]
[ 5] [ 1 8 ]
[ 6] [ 2 2 5 ]
[ 7] [ 2 3 4 ]
[ 8] [ 2 4 3 ]
[ 9] [ 2 7 ]
[10] [ 3 2 4 ]
[11] [ 3 3 3 ]
[12] [ 3 6 ]
[13] [ 4 2 3 ]
[14] [ 4 5 ]
[15] [ 5 4 ]
[16] [ 6 3 ]
[17] [ 7 2 ]
[18] [ 9 ]
(End)
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
add(b(n-j, i+1), j=i..n))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 28 2014
MATHEMATICA
nmax = 50; CoefficientList[Series[Sum[x^(k*(k+1)/2) / (1-x)^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 05 2015 *)
b[n_, i_] := b[n, i] = If[n==0, 1, Sum[b[n-j, i+1], {j, i, n}]]; a[n_] := b[n, 1]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Mar 24 2015, after Alois P. Heinz *)
PROG
(PARI)
N=66; q='q+O('q^N);
gf=sum(n=0, N, q^(n*(n+1)/2) / (1-q)^n );
v=Vec(gf)
CROSSREFS
Cf. A063978 (compositions such that p(k) >= k-1 for k >= 2).
Cf. A238873 (superdiagonal partitions), A238394 (strictly superdiagonal partitions), A238874 (strictly superdiagonal compositions), A025147 (strictly superdiagonal partitions into distinct parts).
Cf. A008930 (subdiagonal compositions), A238875 (subdiagonal partitions), A010054 (subdiagonal partitions into distinct parts).
Cf. A098131 (compositions with smallest part >= number of parts; g.f. Sum_{k>=0} x^(k^2)/(1-x)^k).
Cf. A143862 (compositions with every part divisible by number of parts; g.f. Sum_{k>=0} x^(k^2) / (1 - x^k)^k).
Cf. A238860 (partitions with superdiagonal growth), A238861 (compositions with superdiagonal growth), A000009 (partitions into distinct parts have superdiagonal growth by definition).
Cf. A238859 (compositions of n with subdiagonal growth), A238876 (partitions with subdiagonal growth), A001227 (partitions into distinct parts with subdiagonal growth).
Row sums of A305556.
Sequence in context: A129632 A016028 A239551 * A098578 A303667 A050811
KEYWORD
nonn
AUTHOR
Joerg Arndt, Dec 04 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 14 13:32 EDT 2024. Contains 375921 sequences. (Running on oeis4.)