login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A024305 a(n) = 2*(n+1) + 3*n + ... + (k+1)*(n+2-k), where k = floor((n+1)/2). 6
4, 6, 17, 22, 43, 52, 86, 100, 150, 170, 239, 266, 357, 392, 508, 552, 696, 750, 925, 990, 1199, 1276, 1522, 1612, 1898, 2002, 2331, 2450, 2825, 2960, 3384, 3536, 4012, 4182, 4713, 4902, 5491, 5700, 6350, 6580, 7294, 7546, 8327, 8602, 9453, 9752, 10676, 11000, 12000 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
FORMULA
From Vladeta Jovovic, Jan 01 2003: (Start)
a(n) = (1/48)*(4*n^3 + (3*(-1)^(n+1) + 39)*n^2 + (18*(-1)^(n+1) + 74)*n + 27*(-1)^(n+1) + 27).
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7).
G.f.: x*(4 + 2*x - x^2 - x^3)/((1+x)^3*(1-x)^4). (End)
a(n) = Sum_{i=1..ceiling(n/2)} (i+1)*(n-i+2) = ceiling(n/2)*(-2*ceiling(n/2)^2 + 3n*ceiling(n/2) + 9*n + 14)/6. - Wesley Ivan Hurt, Sep 20 2013
E.g.f.: (1/24)*( x*(69 + 24*x + 2*x^2)*cosh(x) + (27 + 48*x + 27*x^2 + 2*x^3)*sinh(x) ). - G. C. Greubel, Jul 12 2022
MAPLE
seq(sum((i+1)*(k-i+2), i=1..ceil(k/2)), k=1..70); # Wesley Ivan Hurt, Sep 20 2013
MATHEMATICA
Table[Ceiling[n/2]*(-2*Ceiling[n/2]^2+3n*Ceiling[n/2]+9n+14)/6, {n, 100}] (* Wesley Ivan Hurt, Sep 20 2013 *)
PROG
(Magma)
b:= func< n | (1-(-1)^n)/2 >;
[(2*n^3 + 3*(6 +b(n))*n^2 + 2*(14 +9*b(n))*n + 27*b(n))/24 : n in [1..50]] // G. C. Greubel, Jul 12 2022
(SageMath)
def b(n): return (1-(-1)^n)/2
[(2*n^3 + 3*(6 +b(n))*n^2 + 2*(14 +9*b(n))*n + 27*b(n))/24 for n in (1..50)] # G. C. Greubel, Jul 12 2022
CROSSREFS
Bisection: 2*A051925(n).
Sequence in context: A226634 A105271 A343758 * A342231 A320245 A337208
KEYWORD
nonn
AUTHOR
EXTENSIONS
Name simplified by Jon E. Schoenfield, Jun 12 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 21:06 EST 2023. Contains 367526 sequences. (Running on oeis4.)