login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075362
Triangle read by rows with the n-th row containing the first n multiples of n.
16
1, 2, 4, 3, 6, 9, 4, 8, 12, 16, 5, 10, 15, 20, 25, 6, 12, 18, 24, 30, 36, 7, 14, 21, 28, 35, 42, 49, 8, 16, 24, 32, 40, 48, 56, 64, 9, 18, 27, 36, 45, 54, 63, 72, 81, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 12, 24, 36, 48, 60, 72, 84
OFFSET
1,2
COMMENTS
(Conjecture) Let N=2*n and k=1,...,n. Let A_{N,0}, A_{N,1}, ..., A_{N,n-1} be the n X n unit-primitive matrices (see [Jeffery]) associated with N. Define the Chebyshev polynomials of the second kind by the recurrence U_0(x)=1, U_1(x)=2*x and U_r(x)=2*x*U_(r-1)(x)-U_(r-2)(x) (r>1). Define the column vectors V_(k-1)=(U_(k-1)(cos(Pi/N)), U_(k-1)(cos(3*Pi/N)), ..., U_(k-1)(cos((2*n-1)*Pi/N)))^T, where B^T denotes the transpose of matrix B. Let S_N=[V_0,V_1,...,V_(n-1)] be the n X n matrix formed by taking the components of vector V_(k-1) as the entries in column k-1 (V_(k-1) gives the ordered spectrum of A_{N,k-1}). Let X_N=[S_N]^T*S_N, and let [X_N]_(i,j) denote the entry in row i and column j of X_N, i,j in {0,...,n-1}. Then also T(n,k)=[X_N]_(k-1,k-1); that is, row n of the triangle is given by the main diagonal entries of X_N. Hence T(n,k) is the sum of squares T(n,k) = sum[m=1,...,n (U_(k-1)(cos((2*m-1)*Pi/N)))^2]=[V_(k-1)]^T*V_(k-1). - L. Edson Jeffery, Jan 20 2012
Conjecture that antidiagonal sums are A023855. - L. Edson Jeffery, Jan 20 2012
Viewed as a sequence of rows, consider the subsequences (of rows) that contain every positive integer. The lexicographically latest of these subsequences consists of the rows with row numbers in A066680 U {1}; this is the only one that contains its own row numbers only once. - Peter Munn, Dec 04 2019
LINKS
FORMULA
T(n,k) = n*k, 1 <= k <= n. - Reinhard Zumkeller, Mar 07 2010
T(n,k) = A050873(n,k)*A051173(n,k), 1 <= k <= n. - Reinhard Zumkeller, Apr 25 2011
T(n,k) = Sum_{i=1..k} i*binomial(k,i)*binomial(n+1-k,n-i), 1 <= k <= n. - Mircea Merca, Apr 11 2012
T(n,k) = A002260(n,k)*A002024(n,k) = (A215630(n,k)-A215631(n,k))/2, 1 <= k <= n. - Reinhard Zumkeller, Nov 11 2012
a(n) = A223544(n) - 1; a(n) = i*(t+1), where i = n - t*(t+1)/2, t = floor((-1 + sqrt(8*n-7))/2). - Boris Putievskiy, Jul 24 2013
EXAMPLE
Triangle begins:
1;
2, 4;
3, 6, 9;
4, 8, 12, 16;
5, 10, 15, 20, 25;
6, 12, 18, 24, 30, 36;
MAPLE
T(n, k):=piecewise(k<=n, sum(i*binomial(k, i)*binomial(n+1-k, n-i), i=1..k), k>n, 0) # Mircea Merca, Apr 11 2012
MATHEMATICA
Table[NestList[n+#&, n, n-1], {n, 15}]//Flatten (* Harvey P. Dale, Jun 14 2022 *)
PROG
(Haskell)
a075362 n k = a075362_tabl !! (n-1) !! (k-1)
a075362_row n = a075362_tabl !! (n-1)
a075362_tabl = zipWith (zipWith (*)) a002260_tabl a002024_tabl
-- Reinhard Zumkeller, Nov 11 2012, Oct 04 2012
CROSSREFS
A002411 gives the sum of the n-th row. A141419 is similarly derived.
Cf. A003991 (square multiplication table).
Main diagonal gives A000290.
Sequence in context: A153125 A359697 A139413 * A377133 A110749 A077529
KEYWORD
nonn,tabl,easy
AUTHOR
Amarnath Murthy, Sep 20 2002
EXTENSIONS
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 20 2003
STATUS
approved