login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075363
Triangle read by rows, in which n-th row gives n smallest powers of n.
6
1, 2, 4, 3, 9, 27, 4, 16, 64, 256, 5, 25, 125, 625, 3125, 6, 36, 216, 1296, 7776, 46656, 7, 49, 343, 2401, 16807, 117649, 823543, 8, 64, 512, 4096, 32768, 262144, 2097152, 16777216, 9, 81, 729, 6561, 59049, 531441, 4782969, 43046721, 387420489, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000
OFFSET
1,2
COMMENTS
T(n,k) is the number of sequences with repetition (k-tuples) of k (not necessarily different) elements taken from an n-set S. These sequences are also called "words of length k over the alphabet S". For sequences without repetition (partial permutations) cf. A068424. - Manfred Boergens, Jun 18 2023
FORMULA
T(n, k) = n^k, 1<=k<=n.
a(n) = A002024(n)^A002260(n). [Gerald Hillier, Feb 12 2009]
EXAMPLE
From Felix Fröhlich, Sep 15 2019: (Start)
Triangle begins:
1;
2, 4;
3, 9, 27;
4, 16, 64, 256;
5, 25, 125, 625, 3125;
6, 36, 216, 1296, 7776, 46656;
7, 49, 343, 2401, 16807, 117649, 823543;
8, 64, 512, 4096, 32768, 262144, 2097152, 16777216;
9, 81, 729, 6561, 59049, 531441, 4782969, 43046721, 387420489; (End)
PROG
(PARI) row(n) = for(k=1, n, print1(n^k, ", "))
trianglerows(n) = for(x=1, n, row(x); print(""))
/* Print initial 10 rows as follows: */
trianglerows(10) \\ Felix Fröhlich, Sep 15 2019
CROSSREFS
T(n, 1) = A000027(n), T(n, n) = A000312(n). Cf. A090414.
Sequence in context: A110339 A223703 A157406 * A082382 A239599 A271864
KEYWORD
nonn,tabl,easy
AUTHOR
Amarnath Murthy, Sep 20 2002
EXTENSIONS
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 20 2003
More terms from Michel Marcus, Sep 15 2019
STATUS
approved