login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223703
Conjectured irregular triangle (with some rows blank) of numbers k such that prime(n) is the largest prime factor of k^3 - 1.
0
2, 4, 3, 9, 16, 22, 18, 7, 11, 30, 5, 25, 67, 191, 10, 26, 100, 121, 211, 581, 676, 6, 36, 49, 79, 87, 165, 6205, 178, 13, 47, 501, 562, 29, 37, 68, 135, 163, 565, 900, 1369, 1712, 3446, 4624, 8, 64, 74, 81, 137, 373, 439, 1451, 1816, 2629, 7527, 39209
OFFSET
1,1
COMMENTS
Primes 2, 3, 5, 11, 23, 41, 53, 71, 83, 89,... do not appear as largest factors. However, they can be smaller factors. For instance, 3^3 - 1 = 2 * 13.
EXAMPLE
Irregular triangle:
2: {},
3: {},
5: {},
7: {2, 4},
11: {},
13: {3, 9, 16, 22},
17: {18},
19: {7, 11},
23: {},
29: {30},
31: {5, 25, 67, 191},
37: {10, 26, 100, 121, 211, 581, 676},
41: {},
43: {6, 36, 49, 79, 87, 165},
47: {6205},
53: {},
59: {178},
61: {13, 47, 501, 562},
67: {29, 37, 68, 135, 163, 565, 900, 1369, 1712, 3446, 4624},
71: {},
73: {8, 64, 74, 81, 137, 373, 439, 1451, 1816, 2629, 7527, 39209}
MATHEMATICA
t = Table[FactorInteger[n^3 - 1][[-1, 1]], {n, 2, 10^6}]; Table[1 + Flatten[Position[t, Prime[n]]], {n, 25}]
CROSSREFS
Cf. A175607 (largest number k such that the greatest prime factor of k^2-1 is prime(n)).
Cf. A223701-A223707 (related sequences).
Sequence in context: A100781 A358488 A110339 * A157406 A075363 A082382
KEYWORD
nonn,tabf
AUTHOR
T. D. Noe, Apr 03 2013
STATUS
approved