OFFSET
1,1
COMMENTS
Primes 2, 3, 5, 11, 23, 41, 53, 71, 83, 89,... do not appear as largest factors. However, they can be smaller factors. For instance, 3^3 - 1 = 2 * 13.
EXAMPLE
Irregular triangle:
2: {},
3: {},
5: {},
7: {2, 4},
11: {},
13: {3, 9, 16, 22},
17: {18},
19: {7, 11},
23: {},
29: {30},
31: {5, 25, 67, 191},
37: {10, 26, 100, 121, 211, 581, 676},
41: {},
43: {6, 36, 49, 79, 87, 165},
47: {6205},
53: {},
59: {178},
61: {13, 47, 501, 562},
67: {29, 37, 68, 135, 163, 565, 900, 1369, 1712, 3446, 4624},
71: {},
73: {8, 64, 74, 81, 137, 373, 439, 1451, 1816, 2629, 7527, 39209}
MATHEMATICA
t = Table[FactorInteger[n^3 - 1][[-1, 1]], {n, 2, 10^6}]; Table[1 + Flatten[Position[t, Prime[n]]], {n, 25}]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
T. D. Noe, Apr 03 2013
STATUS
approved