OFFSET
1,2
LINKS
R. Bacher, On generating series of complementary plane trees arXiv:math/0409050 [math.CO], 2004.
F. Chapoton, F. Hivert, J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092 [math.CO], 2013.
J.-L. Loday, Inversion of integral series enumerating planar trees, Séminaire Lotharingien de Combinatoire 53, Art. B53d, 16 pp, 2005. See example (g).
FORMULA
x = (y - y^2 - y^3)/(1+y)^2 is the inverse of the generating function.
a(n) = sum(j=0..n-1, (sum(i=0..n-j-1, binomial(i+n-1,n-1) *binomial(i+n,n-j-i-1))) *binomial(n,j))/n, n>0, a(0)=0. - Vladimir Kruchinin, Oct 12 2011
EXAMPLE
a(2)=3 because the non-crossing plants in a triangle are the three non-crossing trees, made of two sides.
G.f. = x + 3*x^2 + 14*x^3 + 80*x^4 + 510*x^5 + 3479*x^6 + 25848*x^7 + ...
MATHEMATICA
a[n_] := If[n==0, 0, Sum[Sum[Binomial[i+n-1, n-1]*Binomial[i+n, n-j-i-1], {i, 0, n-j-1}]*Binomial[n, j], {j, 0, n-1}]/n]; Table[a[n], {n, 1, 16}] (* Jean-François Alcover, Feb 20 2017, after Vladimir Kruchinin *)
PROG
(Maxima)
a(n):=if n=0 then 0 else sum((sum(binomial(i+n-1, n-1)*binomial(i+n, n-j-i-1), i, 0, n-j-1))*binomial(n, j), j, 0, n-1)/n; /* Vladimir Kruchinin, Oct 12 2011 */
(PARI) {a(n) = if( n<1, 0, polcoeff( serreverse( (x - x^2 + x^3) / (1 + x)^2 + x * O(x^n)), n))}; /* Michael Somos, Dec 31 2014 */
CROSSREFS
KEYWORD
nonn
AUTHOR
F. Chapoton, Aug 31 2006
STATUS
approved