login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121873
Number of non-crossing plants in the (n+1)-sided regular polygon (contains non-crossing trees).
0
1, 3, 14, 80, 510, 3479, 24848, 183465, 1389090, 10726452, 84150858, 668825768, 5373971036, 43580383095, 356234802952, 2932097981824, 24279982680870, 202134854855973, 1690839212784240, 14204198452365180, 119784707913644598, 1013675671656956976
OFFSET
1,2
LINKS
R. Bacher, On generating series of complementary plane trees arXiv:math/0409050 [math.CO], 2004.
F. Chapoton, F. Hivert, J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092 [math.CO], 2013.
J.-L. Loday, Inversion of integral series enumerating planar trees, Séminaire Lotharingien de Combinatoire 53, Art. B53d, 16 pp, 2005. See example (g).
FORMULA
x = (y - y^2 - y^3)/(1+y)^2 is the inverse of the generating function.
a(n) = sum(j=0..n-1, (sum(i=0..n-j-1, binomial(i+n-1,n-1) *binomial(i+n,n-j-i-1))) *binomial(n,j))/n, n>0, a(0)=0. - Vladimir Kruchinin, Oct 12 2011
EXAMPLE
a(2)=3 because the non-crossing plants in a triangle are the three non-crossing trees, made of two sides.
G.f. = x + 3*x^2 + 14*x^3 + 80*x^4 + 510*x^5 + 3479*x^6 + 25848*x^7 + ...
MATHEMATICA
a[n_] := If[n==0, 0, Sum[Sum[Binomial[i+n-1, n-1]*Binomial[i+n, n-j-i-1], {i, 0, n-j-1}]*Binomial[n, j], {j, 0, n-1}]/n]; Table[a[n], {n, 1, 16}] (* Jean-François Alcover, Feb 20 2017, after Vladimir Kruchinin *)
PROG
(Maxima)
a(n):=if n=0 then 0 else sum((sum(binomial(i+n-1, n-1)*binomial(i+n, n-j-i-1), i, 0, n-j-1))*binomial(n, j), j, 0, n-1)/n; /* Vladimir Kruchinin, Oct 12 2011 */
(PARI) {a(n) = if( n<1, 0, polcoeff( serreverse( (x - x^2 + x^3) / (1 + x)^2 + x * O(x^n)), n))}; /* Michael Somos, Dec 31 2014 */
CROSSREFS
Cf. A006013.
Sequence in context: A027614 A306040 A168592 * A361770 A107596 A212391
KEYWORD
nonn
AUTHOR
F. Chapoton, Aug 31 2006
STATUS
approved