The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A306040 Expansion of e.g.f. Product_{k>=1} (1 + log(1 + x)^k/k!). 1
 1, 1, 0, 3, -14, 80, -479, 3024, -19802, 129114, -740172, 1569150, 66402733, -2071117841, 47637088903, -1025499372275, 21965630892954, -479007175968646, 10740252324008140, -248679637522491506, 5956075167341406752, -147619197124939380988, 3784960110596636657926 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS N. J. A. Sloane, Transforms Eric Weisstein's World of Mathematics, Stirling Transform FORMULA E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*log(1 + x)^(j*k)/(k*(j!)^k)). a(n) = Sum_{k=0..n} Stirling1(n,k)*A007837(k). MAPLE a:=series(mul(1+log(1+x)^k/k!, k=1..100), x=0, 23): seq(n!*coeff(a, x, n), n=0..22); # Paolo P. Lava, Mar 26 2019 MATHEMATICA nmax = 22; CoefficientList[Series[Product[(1 + Log[1 + x]^k/k!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! nmax = 22; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k + 1) Log[1 + x]^(j k)/(k (j!)^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]! b[0] = 1; b[n_] := b[n] = Sum[(n - 1)!/(n - k)! DivisorSum[k, -# (-#!)^(-k/#) &] b[n - k], {k, 1, n}]; a[n_] := a[n] = Sum[StirlingS1[n, k] b[k], {k, 0, n}]; Table[a[n], {n, 0, 22}] CROSSREFS Cf. A007837, A305547, A306039. Sequence in context: A218677 A305128 A027614 * A168592 A121873 A107596 Adjacent sequences:  A306037 A306038 A306039 * A306041 A306042 A306043 KEYWORD sign AUTHOR Ilya Gutkovskiy, Jun 17 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 21 06:11 EDT 2021. Contains 345358 sequences. (Running on oeis4.)