login
A353079
Exponential transform of odd primes.
1
1, 3, 14, 79, 521, 3876, 31935, 287225, 2791122, 29066589, 322292257, 3784650052, 46857941291, 609360372095, 8296220760974, 117914344818807, 1745211622467633, 26838798853062516, 428009369349905497, 7065576909286562195, 120545067517808693300, 2122393931891338237325, 38512344746420591905771
OFFSET
0,2
FORMULA
E.g.f.: exp( Sum_{k>=1} prime(k+1) * x^k / k! ).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * prime(k+1) * a(n-k).
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*
ithprime(j+1)*binomial(n-1, j-1), j=1..n))
end:
seq(a(n), n=0..22); # Alois P. Heinz, Apr 27 2022
MATHEMATICA
nmax = 22; CoefficientList[Series[Exp[Sum[Prime[k + 1] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] Prime[k + 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 22 2022
STATUS
approved