login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353079
Exponential transform of odd primes.
1
1, 3, 14, 79, 521, 3876, 31935, 287225, 2791122, 29066589, 322292257, 3784650052, 46857941291, 609360372095, 8296220760974, 117914344818807, 1745211622467633, 26838798853062516, 428009369349905497, 7065576909286562195, 120545067517808693300, 2122393931891338237325, 38512344746420591905771
OFFSET
0,2
FORMULA
E.g.f.: exp( Sum_{k>=1} prime(k+1) * x^k / k! ).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * prime(k+1) * a(n-k).
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*
ithprime(j+1)*binomial(n-1, j-1), j=1..n))
end:
seq(a(n), n=0..22); # Alois P. Heinz, Apr 27 2022
MATHEMATICA
nmax = 22; CoefficientList[Series[Exp[Sum[Prime[k + 1] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] Prime[k + 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 22 2022
STATUS
approved