login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353081
Numbers whose squares have the first two digits the same as the next two digits.
1
201, 264, 402, 482, 603, 689, 772, 804, 932, 964, 1005, 1101, 1146, 1231, 1557, 1798, 1907, 2010, 2035, 2084, 2132, 2202, 2357, 2582, 2640, 2659, 2678, 2734, 2878, 3015, 3114, 3179, 3334, 3482, 3624, 3761, 3893, 4020, 4021, 4144, 4264, 4381, 4495, 4606, 4714, 4820, 4924
OFFSET
1,1
FORMULA
201^2 = 40401 and 264^2 = 69696. Thus, both 201 and 264 are in this sequence.
MAPLE
q:= n-> (s-> is(s[1..2]=s[3..4]))(""||(n^2)):
select(q, [$32..10000])[]; # Alois P. Heinz, Apr 22 2022
MATHEMATICA
Select[Range[32, 5000], Take[IntegerDigits[#^2], {1, 2}] == Take[IntegerDigits[#^2], {3, 4}] &]
PROG
(Python)
def ok(n): s = str(n**2); return len(s) > 3 and s[:2] == s[2:4]
print([k for k in range(5000) if ok(k)]) # Michael S. Branicky, Apr 22 2022
(PARI) do(n)=my(v=List()); for(a=1, 9, for(b=0, 9, my(N=10^(n-4), t=(1010*a+101*b)*N-1); for(k=sqrtint(t)+1, sqrtint(t+N), listput(v, k)))); Vec(v) \\ finds terms corresponding to n-digit squares; Charles R Greathouse IV, Apr 24 2022
CROSSREFS
Sequence in context: A296022 A338591 A347887 * A259768 A076192 A157956
KEYWORD
nonn,base,easy
AUTHOR
Tanya Khovanova, Apr 22 2022
STATUS
approved