OFFSET
1,1
FORMULA
201^2 = 40401 and 264^2 = 69696. Thus, both 201 and 264 are in this sequence.
MAPLE
q:= n-> (s-> is(s[1..2]=s[3..4]))(""||(n^2)):
select(q, [$32..10000])[]; # Alois P. Heinz, Apr 22 2022
MATHEMATICA
Select[Range[32, 5000], Take[IntegerDigits[#^2], {1, 2}] == Take[IntegerDigits[#^2], {3, 4}] &]
PROG
(Python)
def ok(n): s = str(n**2); return len(s) > 3 and s[:2] == s[2:4]
print([k for k in range(5000) if ok(k)]) # Michael S. Branicky, Apr 22 2022
(PARI) do(n)=my(v=List()); for(a=1, 9, for(b=0, 9, my(N=10^(n-4), t=(1010*a+101*b)*N-1); for(k=sqrtint(t)+1, sqrtint(t+N), listput(v, k)))); Vec(v) \\ finds terms corresponding to n-digit squares; Charles R Greathouse IV, Apr 24 2022
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Tanya Khovanova, Apr 22 2022
STATUS
approved