|
|
A296022
|
|
Numbers n such that there are precisely 2 groups of orders n, n + 1 and n + 2.
|
|
1
|
|
|
201, 205, 325, 1045, 1653, 1857, 1965, 2041, 2301, 2305, 2605, 2637, 2653, 2853, 2973, 3241, 3445, 3505, 3721, 3757, 4173, 4405, 4585, 4693, 5005, 5217, 5241, 5341, 5685, 5757, 5853, 6685, 6745, 7285, 8005, 8845, 9325, 9441, 9777, 10201, 10293, 10417, 10833
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Equivalently, lower member of consecutive terms of A295230.
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
|
|
MAPLE
|
with(GroupTheory): with(numtheory):
for n from 1 to 10^4 do if [NumGroups(n), NumGroups(n+1), NumGroups(n+2)]=[2, 2, 2] then print(n); fi; od;
|
|
MATHEMATICA
|
cnt = FiniteGroupCount; Select[Range[10^4], cnt[#] == cnt[#+1] == cnt[#+2] == 2&] (* Jean-François Alcover, Dec 08 2017 *)
|
|
PROG
|
(GAP) A296022 := Filtered([1..2013], n -> [NumberSmallGroups(n), NumberSmallGroups(n+1), NumberSmallGroups(n+2)]=[2, 2, 2]);
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|