login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Exponential transform of odd primes.
1

%I #8 Apr 27 2022 18:39:41

%S 1,3,14,79,521,3876,31935,287225,2791122,29066589,322292257,

%T 3784650052,46857941291,609360372095,8296220760974,117914344818807,

%U 1745211622467633,26838798853062516,428009369349905497,7065576909286562195,120545067517808693300,2122393931891338237325,38512344746420591905771

%N Exponential transform of odd primes.

%F E.g.f.: exp( Sum_{k>=1} prime(k+1) * x^k / k! ).

%F a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * prime(k+1) * a(n-k).

%p a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*

%p ithprime(j+1)*binomial(n-1, j-1), j=1..n))

%p end:

%p seq(a(n), n=0..22); # _Alois P. Heinz_, Apr 27 2022

%t nmax = 22; CoefficientList[Series[Exp[Sum[Prime[k + 1] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!

%t a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] Prime[k + 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]

%Y Cf. A007446, A065091, A300632.

%K nonn

%O 0,2

%A _Ilya Gutkovskiy_, Apr 22 2022