login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A306041
Expansion of e.g.f. Product_{k>=1} (1 + x^k/k!)/(1 - x^k/k!).
1
1, 2, 6, 26, 126, 742, 4986, 37942, 321502, 3026150, 31198206, 351179182, 4282131354, 56334933358, 795191463982, 12001157392246, 192825757504222, 3288240179785318, 59314678786251486, 1128751491248706814, 22599321692994969886, 474961934284902165190, 10454818842695667265942
OFFSET
0,2
COMMENTS
Exponential convolution of the sequences A005651 and A007837.
FORMULA
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (1 + (-1)^(k+1))*x^(j*k)/(k*(j!)^k)).
MAPLE
a:=series(mul((1+x^k/k!)/(1-x^k/k!), k=1..100), x=0, 23): seq(n!*coeff(a, x, n), n=0..22); # Paolo P. Lava, Mar 26 2019
MATHEMATICA
nmax = 22; CoefficientList[Series[Product[(1 + x^k/k!)/(1 - x^k/k!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 22; CoefficientList[Series[Exp[Sum[Sum[(1 + (-1)^(k + 1)) x^(j k)/(k (j!)^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 17 2018
STATUS
approved