login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212391
a(n) = A212392(n) / n.
4
1, 1, 3, 14, 80, 516, 3608, 26729, 206808, 1655232, 13612512, 114466491, 980575020, 8533242324, 75267759072, 671721353474, 6056517394512, 55104831724236, 505422858053560, 4669306663437888, 43418090784597696, 406109012334694211, 3818890067546807794
OFFSET
1,3
LINKS
FORMULA
Given g.f. A(x), then G(x) = d/dx A(x^3)/3 = Sum_{n>=1} n*a(n)*x^(3*n-1) is the g.f. of A212392 and satisfies: G(x) = (x + G(G(x)))^2.
G.f. satisfies: A’(x) = ( 1 + x*A’(x)^2 * A’(x^2*A’(x)^3) )^2 where A'(x) = d/dx A(x).
EXAMPLE
G.f.: A(x) = x + x^2 + 3*x^3 + 14*x^4 + 80*x^5 + 516*x^6 + 3608*x^7 + 26729*x^8 +...
Let G(x) = d/dx A(x^3)/3, then G(x) = (x + G(G(x)))^2, where
G(x) = x^2 + 2*x^5 + 9*x^8 + 56*x^11 + 400*x^14 + 3096*x^17 + 25256*x^20 +...
G(G(x)) = x^4 + 4*x^7 + 24*x^10 + 168*x^13 + 1284*x^16 + 10384*x^19 +...
PROG
(PARI) {a(n)=local(G=x^2+x^3); for(i=1, n, G=(x+subst(G, x, G+O(x^(3*n))))^2); polcoeff(G, 3*n-1)/n}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A212392.
Sequence in context: A121873 A361770 A107596 * A000264 A009053 A377662
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 12 2012
STATUS
approved