login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A212390 Number of Dyck n-paths all of whose ascents have lengths equal to 1 (mod 10). 2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 13, 79, 365, 1366, 4369, 12377, 31825, 75583, 167961, 352718, 705466, 1352585, 2501205, 4495351, 7956391, 14221936, 26802361, 56058016, 133316626, 350785307, 967683665, 2677259721, 7246005881, 18977267621, 47931495649 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,12

COMMENTS

Lengths of descents are unrestricted.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

Vaclav Kotesovec, Asymptotic of subsequences of A212382

FORMULA

G.f. satisfies: A(x) = 1+x*A(x)/(1-(x*A(x))^10).

a(n) ~ s^2 / (n^(3/2) * r^(n-1/2) * sqrt(2*Pi*p*(s-1)*(1+s/(1+p*(s-1))))), where p = 10 and r = 0.421937635689419083..., s = 1.885352542104400040... are roots of the system of equations r = p*(s-1)^2 / (s*(1-p+p*s)), (r*s)^p = (s-1-r*s)/(s-1). - Vaclav Kotesovec, Jul 16 2014

EXAMPLE

a(0) = 1: the empty path.

a(1) = 1: UD.

a(11) = 2: UDUDUDUDUDUDUDUDUDUDUD, UUUUUUUUUUUDDDDDDDDDDD.

a(12) = 13: UDUDUDUDUDUDUDUDUDUDUDUD, UDUUUUUUUUUUUDDDDDDDDDDD, UUUUUUUUUUUDDDDDDDDDDDUD, UUUUUUUUUUUDDDDDDDDDDUDD, UUUUUUUUUUUDDDDDDDDDUDDD, UUUUUUUUUUUDDDDDDDDUDDDD, UUUUUUUUUUUDDDDDDDUDDDDD, UUUUUUUUUUUDDDDDDUDDDDDD, UUUUUUUUUUUDDDDDUDDDDDDD, UUUUUUUUUUUDDDDUDDDDDDDD, UUUUUUUUUUUDDDUDDDDDDDDD, UUUUUUUUUUUDDUDDDDDDDDDD, UUUUUUUUUUUDUDDDDDDDDDDD.

MAPLE

b:= proc(x, y, u) option remember;

      `if`(x<0 or y<x, 0, `if`(x=0 and y=0, 1, b(x, y-1, true)+

      `if`(u, add(b(x-(10*t+1), y, false), t=0..(x-1)/10), 0)))

    end:

a:= n-> b(n$2, true):

seq(a(n), n=0..40);

# second Maple program:

a:= n-> coeff(series(RootOf(A=1+x*A/(1-(x*A)^10), A), x, n+1), x, n):

seq(a(n), n=0..40);

CROSSREFS

Column k=10 of A212382.

Sequence in context: A037523 A037732 A090187 * A198849 A037555 A135167

Adjacent sequences:  A212387 A212388 A212389 * A212391 A212392 A212393

KEYWORD

nonn

AUTHOR

Alois P. Heinz, May 12 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 06:19 EDT 2019. Contains 322294 sequences. (Running on oeis4.)