OFFSET
0,12
COMMENTS
Lengths of descents are unrestricted.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
Vaclav Kotesovec, Asymptotic of subsequences of A212382
FORMULA
G.f. satisfies: A(x) = 1+x*A(x)/(1-(x*A(x))^10).
a(n) ~ s^2 / (n^(3/2) * r^(n-1/2) * sqrt(2*Pi*p*(s-1)*(1+s/(1+p*(s-1))))), where p = 10 and r = 0.421937635689419083..., s = 1.885352542104400040... are roots of the system of equations r = p*(s-1)^2 / (s*(1-p+p*s)), (r*s)^p = (s-1-r*s)/(s-1). - Vaclav Kotesovec, Jul 16 2014
EXAMPLE
a(0) = 1: the empty path.
a(1) = 1: UD.
a(11) = 2: UDUDUDUDUDUDUDUDUDUDUD, UUUUUUUUUUUDDDDDDDDDDD.
a(12) = 13: UDUDUDUDUDUDUDUDUDUDUDUD, UDUUUUUUUUUUUDDDDDDDDDDD, UUUUUUUUUUUDDDDDDDDDDDUD, UUUUUUUUUUUDDDDDDDDDDUDD, UUUUUUUUUUUDDDDDDDDDUDDD, UUUUUUUUUUUDDDDDDDDUDDDD, UUUUUUUUUUUDDDDDDDUDDDDD, UUUUUUUUUUUDDDDDDUDDDDDD, UUUUUUUUUUUDDDDDUDDDDDDD, UUUUUUUUUUUDDDDUDDDDDDDD, UUUUUUUUUUUDDDUDDDDDDDDD, UUUUUUUUUUUDDUDDDDDDDDDD, UUUUUUUUUUUDUDDDDDDDDDDD.
MAPLE
b:= proc(x, y, u) option remember;
`if`(x<0 or y<x, 0, `if`(x=0 and y=0, 1, b(x, y-1, true)+
`if`(u, add(b(x-(10*t+1), y, false), t=0..(x-1)/10), 0)))
end:
a:= n-> b(n$2, true):
seq(a(n), n=0..40);
# second Maple program:
a:= n-> coeff(series(RootOf(A=1+x*A/(1-(x*A)^10), A), x, n+1), x, n):
seq(a(n), n=0..40);
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 12 2012
STATUS
approved