login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212388
Number of Dyck n-paths all of whose ascents have lengths equal to 1 (mod 8).
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 11, 56, 221, 716, 2003, 5006, 11441, 24312, 48648, 92721, 170811, 311886, 589590, 1220979, 2864973, 7450852, 20309628, 55305706, 146505451, 373452808, 913836082, 2150455648, 4887179761, 10794337952, 23375638064, 50219351232
OFFSET
0,10
COMMENTS
Lengths of descents are unrestricted.
FORMULA
G.f. satisfies: A(x) = 1+x*A(x)/(1-(x*A(x))^8).
a(n) ~ s^2 / (n^(3/2) * r^(n-1/2) * sqrt(2*Pi*p*(s-1)*(1+s/(1+p*(s-1))))), where p = 8 and r = 0.4098875088359862102..., s = 1.880071788712472133... are roots of the system of equations r = p*(s-1)^2 / (s*(1-p+p*s)), (r*s)^p = (s-1-r*s)/(s-1). - Vaclav Kotesovec, Jul 16 2014
EXAMPLE
a(0) = 1: the empty path.
a(1) = 1: UD.
a(9) = 2: UDUDUDUDUDUDUDUDUD, UUUUUUUUUDDDDDDDDD.
a(10) = 11: UDUDUDUDUDUDUDUDUDUD, UDUUUUUUUUUDDDDDDDDD, UUUUUUUUUDDDDDDDDDUD, UUUUUUUUUDDDDDDDDUDD, UUUUUUUUUDDDDDDDUDDD, UUUUUUUUUDDDDDDUDDDD, UUUUUUUUUDDDDDUDDDDD, UUUUUUUUUDDDDUDDDDDD, UUUUUUUUUDDDUDDDDDDD, UUUUUUUUUDDUDDDDDDDD, UUUUUUUUUDUDDDDDDDDD.
MAPLE
b:= proc(x, y, u) option remember;
`if`(x<0 or y<x, 0, `if`(x=0 and y=0, 1, b(x, y-1, true)+
`if`(u, add (b(x-(8*t+1), y, false), t=0..(x-1)/8), 0)))
end:
a:= n-> b(n$2, true):
seq(a(n), n=0..40);
# second Maple program
a:= n-> coeff(series(RootOf(A=1+x*A/(1-(x*A)^8), A), x, n+1), x, n):
seq(a(n), n=0..40);
CROSSREFS
Column k=8 of A212382.
Sequence in context: A115205 A306753 A306860 * A198769 A037554 A106804
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 12 2012
STATUS
approved