login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306860
a(n) = Sum_{k=0..floor(n/9)} binomial(n,9*k).
4
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 11, 56, 221, 716, 2003, 5006, 11441, 24311, 48622, 92398, 168151, 295261, 504736, 850840, 1442101, 2523676, 4686826, 9373652, 20030039, 44612702, 100804436, 226444616, 499685777, 1076832989, 2261792303, 4631710931, 9263421862
OFFSET
0,10
LINKS
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,2).
FORMULA
G.f.: (1 - x)^8/((1 - x)^9 - x^9).
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + 2*a(n-9) for n > 8.
MATHEMATICA
a[n_] := Sum[Binomial[n, 9*k], {k, 0, Floor[n/9]}]; Array[a, 40, 0] (* Amiram Eldar, Jun 13 2021 *)
PROG
(PARI) {a(n) = sum(k=0, n\9, binomial(n, 9*k))}
(PARI) N=66; x='x+O('x^N); Vec((1-x)^8/((1-x)^9-x^9))
CROSSREFS
Column 9 of A306846.
Sequence in context: A371439 A115205 A306753 * A212388 A198769 A037554
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Mar 14 2019
STATUS
approved