login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212382
Number A(n,k) of Dyck n-paths all of whose ascents have lengths equal to 1+k*m (m>=0); square array A(n,k), n>=0, k>=0, read by antidiagonals.
11
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 2, 14, 1, 1, 1, 1, 1, 5, 42, 1, 1, 1, 1, 1, 2, 12, 132, 1, 1, 1, 1, 1, 1, 6, 30, 429, 1, 1, 1, 1, 1, 1, 2, 16, 79, 1430, 1, 1, 1, 1, 1, 1, 1, 7, 37, 213, 4862, 1, 1, 1, 1, 1, 1, 1, 2, 22, 83, 584, 16796, 1
OFFSET
0,9
COMMENTS
Lengths of descents are unrestricted.
For p>0 is column p asymptotic to a(n) ~ s^2 / (n^(3/2) * r^(n-1/2) * sqrt(2*Pi*p*(s-1)*(1+s/(1+p*(s-1))))), where r and s are real roots (0 < r < 1) of the system of equations r = p*(s-1)^2 / (s*(1-p+p*s)), (r*s)^p = (s-1-r*s)/(s-1). - Vaclav Kotesovec, Jul 16 2014
FORMULA
G.f. of column k>0 satisfies: A_k(x) = 1+x*A_k(x)/(1-(x*A_k(x))^k), g.f. of column k=0: A_0(x) = 1/(1-x).
G.f. of column k>0 is series_reversion(B(x))/x where B(x) = x/(1 + x + x^(k+1) + x^(2*k+1) + x^(3*k+1) + ... ) = x/(1+x/(1-x^k)); for Dyck paths with allowed ascent lengths {u_1, u_2, ...} use B(x) = x/( 1 + sum(k>=1, x^{u_k} ) ). - Joerg Arndt, Apr 23 2016
EXAMPLE
A(0,k) = 1: the empty path.
A(3,0) = 1: UDUDUD.
A(3,1) = 5: UDUDUD, UDUUDD, UUDDUD, UUDUDD, UUUDDD.
A(3,2) = 2: UDUDUD, UUUDDD.
A(5,3) = 6: UDUDUDUDUD, UDUUUUDDDD, UUUUDDDDUD, UUUUDDDUDD, UUUUDDUDDD, UUUUDUDDDD.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 1, 1, 1, 1, 1, 1, ...
1, 5, 2, 1, 1, 1, 1, 1, ...
1, 14, 5, 2, 1, 1, 1, 1, ...
1, 42, 12, 6, 2, 1, 1, 1, ...
1, 132, 30, 16, 7, 2, 1, 1, ...
1, 429, 79, 37, 22, 8, 2, 1, ...
MAPLE
b:= proc(x, y, k, u) option remember;
`if`(x<0 or y<x, 0, `if`(x=0 and y=0, 1, b(x, y-1, k, true)+
`if`(u, add(b(x-(k*t+1), y, k, false), t=0..(x-1)/k), 0)))
end:
A:= (n, k)-> `if`(k=0, 1, b(n, n, k, true)):
seq(seq(A(n, d-n), n=0..d), d=0..15);
# second Maple program
A:= (n, k)-> `if`(k=0, 1, coeff(series(RootOf(
A||k=1+x*A||k/(1-(x*A||k)^k), A||k), x, n+1), x, n)):
seq(seq(A(n, d-n), n=0..d), d=0..15);
MATHEMATICA
b[x_, y_, k_, u_] := b[x, y, k, u] = If[x<0 || y<x, 0, If[x == 0 && y == 0, 1, b[x, y-1, k, True] + If[u, Sum[b[x-(k*t+1), y, k, False], {t, 0, (x-1)/k}], 0]]]; A[n_, k_] := If[k == 0, 1, b[n, n, k, True]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Jan 15 2014, translated from first Maple program *)
CROSSREFS
A(2n,n) gives A323229.
Sequence in context: A219866 A333418 A212363 * A274835 A275069 A181937
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, May 12 2012
STATUS
approved