OFFSET
0,9
LINKS
Alois P. Heinz, Antidiagonals n = 0..140, flattened
Wikipedia, Partition of a set
FORMULA
A(n,k) = Product_{i=0..k-1} A000110(floor((n+i)/k)).
EXAMPLE
A(5,0) = 1: 1|2|3|4|5.
A(5,1) = 52 = A000110(5).
A(5,2) = 10: 135|24, 13|24|5, 135|2|4, 13|2|4|5, 15|24|3, 1|24|35, 1|24|3|5, 15|2|3|4, 1|2|35|4, 1|2|3|4|5.
A(5,3) = 4: 14|25|3, 14|2|3|5, 1|25|3|4, 1|2|3|4|5.
A(5,4) = 2: 15|2|3|4, 1|2|3|4|5.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 15, 4, 2, 1, 1, 1, 1, 1, 1, 1, ...
1, 52, 10, 4, 2, 1, 1, 1, 1, 1, 1, ...
1, 203, 25, 8, 4, 2, 1, 1, 1, 1, 1, ...
1, 877, 75, 20, 8, 4, 2, 1, 1, 1, 1, ...
1, 4140, 225, 50, 16, 8, 4, 2, 1, 1, 1, ...
1, 21147, 780, 125, 40, 16, 8, 4, 2, 1, 1, ...
1, 115975, 2704, 375, 100, 32, 16, 8, 4, 2, 1, ...
MAPLE
with(combinat):
A:= (n, k)-> mul(bell(floor((n+i)/k)), i=0..k-1):
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
A[n_, k_] := Product[BellB[Floor[(n+i)/k]], {i, 0, k-1}]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 17 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 15 2016
STATUS
approved