login
A275069
Number A(n,k) of set partitions of [n] such that i-j is a multiple of k for all i,j belonging to the same block; square array A(n,k), n>=0, k>=0, read by antidiagonals.
10
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 2, 15, 1, 1, 1, 1, 1, 4, 52, 1, 1, 1, 1, 1, 2, 10, 203, 1, 1, 1, 1, 1, 1, 4, 25, 877, 1, 1, 1, 1, 1, 1, 2, 8, 75, 4140, 1, 1, 1, 1, 1, 1, 1, 4, 20, 225, 21147, 1, 1, 1, 1, 1, 1, 1, 2, 8, 50, 780, 115975, 1
OFFSET
0,9
LINKS
FORMULA
A(n,k) = Product_{i=0..k-1} A000110(floor((n+i)/k)).
EXAMPLE
A(5,0) = 1: 1|2|3|4|5.
A(5,1) = 52 = A000110(5).
A(5,2) = 10: 135|24, 13|24|5, 135|2|4, 13|2|4|5, 15|24|3, 1|24|35, 1|24|3|5, 15|2|3|4, 1|2|35|4, 1|2|3|4|5.
A(5,3) = 4: 14|25|3, 14|2|3|5, 1|25|3|4, 1|2|3|4|5.
A(5,4) = 2: 15|2|3|4, 1|2|3|4|5.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 15, 4, 2, 1, 1, 1, 1, 1, 1, 1, ...
1, 52, 10, 4, 2, 1, 1, 1, 1, 1, 1, ...
1, 203, 25, 8, 4, 2, 1, 1, 1, 1, 1, ...
1, 877, 75, 20, 8, 4, 2, 1, 1, 1, 1, ...
1, 4140, 225, 50, 16, 8, 4, 2, 1, 1, 1, ...
1, 21147, 780, 125, 40, 16, 8, 4, 2, 1, 1, ...
1, 115975, 2704, 375, 100, 32, 16, 8, 4, 2, 1, ...
MAPLE
with(combinat):
A:= (n, k)-> mul(bell(floor((n+i)/k)), i=0..k-1):
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
A[n_, k_] := Product[BellB[Floor[(n+i)/k]], {i, 0, k-1}]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 17 2017, translated from Maple *)
CROSSREFS
A(k*n,n) for k=1-4 gives: A000012, A000079, A000351, A001024.
Sequence in context: A212363 A212382 A274835 * A181937 A233836 A214719
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 15 2016
STATUS
approved