login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A274835 Number A(n,k) of set partitions of [n] such that the difference between each element and its block index is a multiple of k; square array A(n,k), n>=0, k>=0, read by antidiagonals. 10
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 2, 15, 1, 1, 1, 1, 1, 3, 52, 1, 1, 1, 1, 1, 2, 7, 203, 1, 1, 1, 1, 1, 1, 3, 14, 877, 1, 1, 1, 1, 1, 1, 2, 4, 39, 4140, 1, 1, 1, 1, 1, 1, 1, 3, 9, 95, 21147, 1, 1, 1, 1, 1, 1, 1, 2, 4, 18, 304, 115975, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

LINKS

Alois P. Heinz, Antidiagonals n = 0..140, flattened

Wikipedia, Partition of a set

EXAMPLE

A(3,0) = 1: 1|2|3.

A(3,1) = 5: 123, 12|3, 13|2, 1|23, 1|2|3.

A(5,2) = 7: 135|24, 13|24|5, 15|24|3, 1|24|35, 15|2|3|4, 1|2|35|4, 1|2|3|4|5.

A(7,3) = 9: 147|25|36, 14|25|36|7, 17|25|36|4, 1|25|36|47, 17|2|36|4|5, 1|2|36|47|5, 17|2|3|4|5|6, 1|2|3|47|5|6, 1|2|3|4|5|6|7.

Square array A(n,k) begins:

  1,      1,   1,  1,  1, 1, 1, 1, 1, 1, 1, ...

  1,      1,   1,  1,  1, 1, 1, 1, 1, 1, 1, ...

  1,      2,   1,  1,  1, 1, 1, 1, 1, 1, 1, ...

  1,      5,   2,  1,  1, 1, 1, 1, 1, 1, 1, ...

  1,     15,   3,  2,  1, 1, 1, 1, 1, 1, 1, ...

  1,     52,   7,  3,  2, 1, 1, 1, 1, 1, 1, ...

  1,    203,  14,  4,  3, 2, 1, 1, 1, 1, 1, ...

  1,    877,  39,  9,  4, 3, 2, 1, 1, 1, 1, ...

  1,   4140,  95, 18,  5, 4, 3, 2, 1, 1, 1, ...

  1,  21147, 304, 33, 11, 5, 4, 3, 2, 1, 1, ...

  1, 115975, 865, 89, 22, 6, 5, 4, 3, 2, 1, ...

MAPLE

b:= proc(n, k, m, t) option remember; `if`(n=0, 1,

     add(`if`(irem(j-t, k)=0, b(n-1, k, max(m, j),

              irem(t+1, k)), 0), j=1..m+1))

    end:

A:= (n, k)-> `if`(k=0, 1, b(n, k, 0, 1)):

seq(seq(A(n, d-n), n=0..d), d=0..14);

MATHEMATICA

b[n_, k_, m_, t_] := b[n, k, m, t] = If[n==0, 1, Sum[If[Mod[j-t, k]==0, b[n-1, k, Max[m, j], Mod[t+1, k]], 0], {j, 1, m+1}]]; A[n_, k_]:= If[k==0, 1, b[n, k, 0, 1]]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Dec 18 2016, after Alois P. Heinz *)

CROSSREFS

Columns k=0-10 give: A000012, A000110, A274538, A274836, A274837, A274838, A274839, A274840, A274841, A274842, A274843.

Main diagonal gives A000012.

A(n,ceiling(n/2)) gives A008619.

A(3n,n) gives A094002.

Sequence in context: A333418 A212363 A212382 * A275069 A181937 A233836

Adjacent sequences:  A274832 A274833 A274834 * A274836 A274837 A274838

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Jul 08 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 21:43 EDT 2022. Contains 353929 sequences. (Running on oeis4.)