login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274841
Number of set partitions of [n] such that the difference between each element and its block index is a multiple of eight.
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 38, 73, 136, 247, 438, 757, 1268, 3303, 7883, 17801, 38745, 82179, 170907, 349341, 700517, 2066512, 5768089, 15386070, 39563059, 98692628, 239843745, 569063602, 1318211431, 4290275275, 13443268926
OFFSET
0,10
LINKS
EXAMPLE
a(8) = 1: 1|2|3|4|5|6|7|8.
a(9) = 2: 19|2|3|4|5|6|7|8, 1|2|3|4|5|6|7|8|9.
a(10) = 3: 19|2(10)|3|4|5|6|7|8, 1|2(10)|3|4|5|6|7|8|9, 1|2|3|4|5|6|7|8|9|(10).
MAPLE
b:= proc(n, m, t) option remember; `if`(n=0, 1,
add(`if`(irem(j-t, 8)=0, b(n-1, max(m, j),
irem(t+1, 8)), 0), j=1..m+1))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..45);
MATHEMATICA
b[n_, m_, t_] := b[n, m, t] = If[n == 0, 1, Sum[If[Mod[j - t, 8] == 0, b[n - 1, Max[m, j], Mod[t + 1, 8]], 0], {j, 1, m + 1}]];
a[n_] := b[n, 0, 1];
Table[a[n], {n, 0, 45}] (* Jean-François Alcover, May 15 2018, after Alois P. Heinz *)
CROSSREFS
Column k=8 of A274835.
Sequence in context: A051885 A227378 A226637 * A247227 A048410 A341161
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 08 2016
STATUS
approved