login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051885
Smallest number whose sum of digits is n.
61
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 29, 39, 49, 59, 69, 79, 89, 99, 199, 299, 399, 499, 599, 699, 799, 899, 999, 1999, 2999, 3999, 4999, 5999, 6999, 7999, 8999, 9999, 19999, 29999, 39999, 49999, 59999, 69999, 79999, 89999, 99999, 199999, 299999, 399999, 499999
OFFSET
0,3
COMMENTS
This is also the list of lunar triangular numbers: A087052 with duplicates removed. - N. J. A. Sloane, Jan 25 2011
Numbers n such that A061486(n) = n. - Amarnath Murthy, May 06 2001
The product of digits incremented by 1 is the same as the number incremented by 1. If a(n) = abcd...(a,b,c,d, etc. are digits of a(n)) {a(n) + 1} = (a+1)*(b+1)(c+1)*(d+1)*..., e.g., 299 + 1 = (2+1)*(9+1)*(9+1) = 300. - Amarnath Murthy, Jul 29 2003
A138471(a(n)) = 0. - Reinhard Zumkeller, Mar 19 2008
a(n+1) = A108971(A179988(n)). - Reinhard Zumkeller, Aug 09 2010, Jul 10 2011
Positions of records in A003132: A080151(n) = A003132(a(n)). - Reinhard Zumkeller, Jul 10 2011
a(n) = A242614(n,1). - Reinhard Zumkeller, Jul 16 2014
A254524(a(n)) = 1. - Reinhard Zumkeller, Oct 09 2015
The slowest strictly increasing sequence of nonnegative integers such that, for any two terms, calculating the difference of their decimal representations requires no borrowing. - Rick L. Shepherd, Aug 11 2017
LINKS
Iain Fox, Table of n, a(n) for n = 0..9000 (first 101 terms from Reinhard Zumkeller)
D. Applegate, M. LeBrun and N. J. A. Sloane, Dismal Arithmetic, arXiv:1107.1130 [math.NT], 2011. [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing]
A. Murthy, Exploring some new ideas on Smarandache type sets, functions and sequences, Smarandache Notions Journal Vol. 11 N. 1-2-3 Spring 2000.
FORMULA
These are the numbers i*10^j-1 (i=1..9, j >= 0). - N. J. A. Sloane, Jan 25 2011
a(n) = ((n mod 9) + 1)*10^floor(n/9) - 1 = a(n-1) + 10^floor((n-1)/9). - Henry Bottomley, Apr 24 2001
a(n) = A037124(n+1) - 1. - Reinhard Zumkeller, Jan 03 2008, Jul 10 2011
G.f.: x*(x^2+x+1)*(x^6+x^3+1) / ((x-1)*(10*x^9-1)). - Colin Barker, Feb 01 2013
MAPLE
b:=10; t1:=[]; for j from 0 to 15 do for i from 1 to b-1 do t1:=[op(t1), i*b^j-1]; od: od: t1; # N. J. A. Sloane, Jan 25 2011
MATHEMATICA
a[n_] := (Mod[n, 9] + 1)*10^Floor[n/9] - 1; Table[a[n], {n, 0, 49}](* Jean-François Alcover, Dec 01 2011, after Henry Bottomley *)
PROG
(Haskell)
a051885 n = (m + 1) * 10^n' - 1 where (n', m) = divMod n 9
-- Reinhard Zumkeller, Jul 10 2011
(Magma) [i*10^j-1: i in [1..9], j in [0..5]];
(PARI) A051885(n) = (n%9+1)*10^(n\9)-1 \\ M. F. Hasler, Jun 17 2012
(PARI) first(n) = Vec(x*(x^2 + x + 1)*(x^6 + x^3 + 1)/((x - 1)*(10*x^9 - 1)) + O(x^n), -n) \\ Iain Fox, Dec 30 2017
(Python)
def A051885(n): return ((n % 9)+1)*10**(n//9)-1 # Chai Wah Wu, Apr 04 2021
CROSSREFS
Numbers of form i*b^j-1 (i=1..b-1, j >= 0) for bases b = 2 through 9: A000225, A062318, A180516, A181287, A181288, A181303, A165804, A140576. - N. J. A. Sloane, Jan 25 2011
Cf. A002283.
Cf. A254524.
Sequence in context: A317110 A340254 A190876 * A227378 A226637 A274841
KEYWORD
nonn,easy,base,nice,look
AUTHOR
Felice Russo, Dec 15 1999
EXTENSIONS
More terms from James A. Sellers, Dec 16 1999
Offset fixed by Reinhard Zumkeller, Jul 10 2011
STATUS
approved