login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest number whose sum of digits is n.
61

%I #97 Dec 30 2023 23:48:07

%S 0,1,2,3,4,5,6,7,8,9,19,29,39,49,59,69,79,89,99,199,299,399,499,599,

%T 699,799,899,999,1999,2999,3999,4999,5999,6999,7999,8999,9999,19999,

%U 29999,39999,49999,59999,69999,79999,89999,99999,199999,299999,399999,499999

%N Smallest number whose sum of digits is n.

%C This is also the list of lunar triangular numbers: A087052 with duplicates removed. - _N. J. A. Sloane_, Jan 25 2011

%C Numbers n such that A061486(n) = n. - _Amarnath Murthy_, May 06 2001

%C The product of digits incremented by 1 is the same as the number incremented by 1. If a(n) = abcd...(a,b,c,d, etc. are digits of a(n)) {a(n) + 1} = (a+1)*(b+1)(c+1)*(d+1)*..., e.g., 299 + 1 = (2+1)*(9+1)*(9+1) = 300. - _Amarnath Murthy_, Jul 29 2003

%C A138471(a(n)) = 0. - _Reinhard Zumkeller_, Mar 19 2008

%C a(n+1) = A108971(A179988(n)). - _Reinhard Zumkeller_, Aug 09 2010, Jul 10 2011

%C Positions of records in A003132: A080151(n) = A003132(a(n)). - _Reinhard Zumkeller_, Jul 10 2011

%C a(n) = A242614(n,1). - _Reinhard Zumkeller_, Jul 16 2014

%C A254524(a(n)) = 1. - _Reinhard Zumkeller_, Oct 09 2015

%C The slowest strictly increasing sequence of nonnegative integers such that, for any two terms, calculating the difference of their decimal representations requires no borrowing. - _Rick L. Shepherd_, Aug 11 2017

%H Iain Fox, <a href="/A051885/b051885.txt">Table of n, a(n) for n = 0..9000</a> (first 101 terms from Reinhard Zumkeller)

%H D. Applegate, M. LeBrun and N. J. A. Sloane, <a href="http://arxiv.org/abs/1107.1130">Dismal Arithmetic</a>, arXiv:1107.1130 [math.NT], 2011. [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing]

%H A. Murthy, <a href="http://www.gallup.unm.edu/~smarandache/SN/ScArt5/ExploringNewIdeas.pdf">Exploring some new ideas on Smarandache type sets, functions and sequences</a>, Smarandache Notions Journal Vol. 11 N. 1-2-3 Spring 2000.

%H <a href="/index/Di#dismal">Index entries for sequences related to dismal (or lunar) arithmetic</a>

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,0,10,-10).

%F These are the numbers i*10^j-1 (i=1..9, j >= 0). - _N. J. A. Sloane_, Jan 25 2011

%F a(n) = ((n mod 9) + 1)*10^floor(n/9) - 1 = a(n-1) + 10^floor((n-1)/9). - _Henry Bottomley_, Apr 24 2001

%F a(n) = A037124(n+1) - 1. - _Reinhard Zumkeller_, Jan 03 2008, Jul 10 2011

%F G.f.: x*(x^2+x+1)*(x^6+x^3+1) / ((x-1)*(10*x^9-1)). - _Colin Barker_, Feb 01 2013

%p b:=10; t1:=[]; for j from 0 to 15 do for i from 1 to b-1 do t1:=[op(t1), i*b^j-1]; od: od: t1; # _N. J. A. Sloane_, Jan 25 2011

%t a[n_] := (Mod[n, 9] + 1)*10^Floor[n/9] - 1; Table[a[n], {n, 0, 49}](* _Jean-François Alcover_, Dec 01 2011, after _Henry Bottomley_ *)

%o (Haskell)

%o a051885 n = (m + 1) * 10^n' - 1 where (n',m) = divMod n 9

%o -- _Reinhard Zumkeller_, Jul 10 2011

%o (Magma) [i*10^j-1: i in [1..9], j in [0..5]];

%o (PARI) A051885(n) = (n%9+1)*10^(n\9)-1 \\ _M. F. Hasler_, Jun 17 2012

%o (PARI) first(n) = Vec(x*(x^2 + x + 1)*(x^6 + x^3 + 1)/((x - 1)*(10*x^9 - 1)) + O(x^n), -n) \\ _Iain Fox_, Dec 30 2017

%o (Python)

%o def A051885(n): return ((n % 9)+1)*10**(n//9)-1 # _Chai Wah Wu_, Apr 04 2021

%Y Cf. A061104, A061105, A061486, A007953, A067043, A087052.

%Y Numbers of form i*b^j-1 (i=1..b-1, j >= 0) for bases b = 2 through 9: A000225, A062318, A180516, A181287, A181288, A181303, A165804, A140576. - _N. J. A. Sloane_, Jan 25 2011

%Y Cf. A002283.

%Y Cf. A254524.

%K nonn,easy,base,nice,look

%O 0,3

%A _Felice Russo_, Dec 15 1999

%E More terms from _James A. Sellers_, Dec 16 1999

%E Offset fixed by _Reinhard Zumkeller_, Jul 10 2011