OFFSET
0,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..500
A. Dzhumadil’daev and D. Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764v1, 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - N. J. A. Sloane, Mar 28 2015]
Askar Dzhumadil’daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
FORMULA
a(n) = Q[n](1,1,0), where the polynomials Q[n]=Q[n](t,s,x) are defined by Q[0]=1; Q[n]=t*dQ[n-1]/dt + x*dQ[n-1]/ds + x*dQ[n-1]/dx + t*Q[n-1] if n is odd and Q[n]=x*dQ[n-1]/dt + s*dQ[n-1]/ds + x*dQ[n-1]/dx + s*Q[n-1] if n is even.
a(n) mod 2 = A088911(n). - Alois P. Heinz, Jun 06 2023
EXAMPLE
a(4) = 4 because we have 13|24, 1|24|3, 13|2|4 and 1|2|3|4.
MAPLE
Q[0]:=1: for n from 1 to 30 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1], t)+x*diff(Q[n-1], s)+x*diff(Q[n-1], x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1], t)+s*diff(Q[n-1], s)+x*diff(Q[n-1], x)+s*Q[n-1]) fi od: for n from 0 to 30 do Q[n]:=Q[n] od: seq(subs({t=1, s=1, x=0}, Q[n]), n=0..30);
# second Maple program:
with(combinat):
a:= n-> bell(floor(n/2))*bell(ceil(n/2)):
seq(a(n), n=0..30); # Alois P. Heinz, Oct 23 2013
MATHEMATICA
a[n_] := BellB[Floor[n/2]]*BellB[Ceiling[n/2]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 20 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Oct 31 2006
STATUS
approved