login
A124419
Number of partitions of the set {1,2,...n} having no blocks that contain both odd and even entries.
19
1, 1, 1, 2, 4, 10, 25, 75, 225, 780, 2704, 10556, 41209, 178031, 769129, 3630780, 17139600, 87548580, 447195609, 2452523325, 13450200625, 78697155750, 460457244900, 2859220516290, 17754399678409, 116482516809889, 764214897046969, 5277304280371714
OFFSET
0,4
LINKS
A. Dzhumadil’daev and D. Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764v1, 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - N. J. A. Sloane, Mar 28 2015]
Askar Dzhumadil’daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
FORMULA
a(n) = Q[n](1,1,0), where the polynomials Q[n]=Q[n](t,s,x) are defined by Q[0]=1; Q[n]=t*dQ[n-1]/dt + x*dQ[n-1]/ds + x*dQ[n-1]/dx + t*Q[n-1] if n is odd and Q[n]=x*dQ[n-1]/dt + s*dQ[n-1]/ds + x*dQ[n-1]/dx + s*Q[n-1] if n is even.
a(n) = A000110(floor(n/2)) * A000110(ceiling(n/2)). - Alois P. Heinz, Oct 23 2013
a(n) mod 2 = A088911(n). - Alois P. Heinz, Jun 06 2023
EXAMPLE
a(4) = 4 because we have 13|24, 1|24|3, 13|2|4 and 1|2|3|4.
MAPLE
Q[0]:=1: for n from 1 to 30 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1], t)+x*diff(Q[n-1], s)+x*diff(Q[n-1], x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1], t)+s*diff(Q[n-1], s)+x*diff(Q[n-1], x)+s*Q[n-1]) fi od: for n from 0 to 30 do Q[n]:=Q[n] od: seq(subs({t=1, s=1, x=0}, Q[n]), n=0..30);
# second Maple program:
with(combinat):
a:= n-> bell(floor(n/2))*bell(ceil(n/2)):
seq(a(n), n=0..30); # Alois P. Heinz, Oct 23 2013
MATHEMATICA
a[n_] := BellB[Floor[n/2]]*BellB[Ceiling[n/2]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 20 2015, after Alois P. Heinz *)
CROSSREFS
Column k=0 of A124418 and of A363493.
Column k=2 of A275069.
Sequence in context: A206289 A148094 A148095 * A148096 A006901 A123422
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Oct 31 2006
STATUS
approved