OFFSET
0,7
COMMENTS
LINKS
Alois P. Heinz, Rows n = 0..150, flattened
FORMULA
The generating polynomial of row n is P[n](t)=Q[n](t,1,1), where the polynomials Q[n]=Q[n](t,s,x) are defined by Q[0]=1; Q[n]=t*dQ[n-1]/dt + x*dQ[n-1]/ds + x*dQ[n-1]/dx + t*Q[n-1] if n is odd and Q[n]=x*dQ[n-1]/dt + s*dQ[n-1]/ds + x*dQ[n-1]/dx + s*Q[n-1] if n is even.
EXAMPLE
T(4,1) = 8 because we have 13|24, 1|234, 124|3, 14|2|3, 1|2|34, 13|2|4, 1|23|4 and 12|3|4.
Triangle starts:
1;
0, 1;
1, 1;
1, 3, 1;
5, 8, 2;
9, 26, 15, 2;
52, 101, 45, 5;
MAPLE
Q[0]:=1: for n from 1 to 13 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1], t)+x*diff(Q[n-1], s)+x*diff(Q[n-1], x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1], t)+s*diff(Q[n-1], s)+x*diff(Q[n-1], x)+s*Q[n-1]) fi od: for n from 0 to 13 do P[n]:=sort(subs({s=1, x=1}, Q[n])) od: for n from 0 to 13 do seq(coeff(P[n], t, j), j=0..ceil(n/2)) od; # yields sequence in triangular form
# second Maple program:
T:= proc(n, k) local g, u; g:= floor(n/2); u:=ceil(n/2);
add(Stirling2(i, k)*binomial(u, i)*
add(Stirling2(g, j)*j^(u-i), j=0..g), i=k..u)
end:
seq(seq(T(n, k), k=0..ceil(n/2)), n=0..15); # Alois P. Heinz, Oct 23 2013
MATHEMATICA
T[n_, k_] := Module[{g = Floor[n/2], u = Ceiling[n/2]},
Sum[StirlingS2[i, k]*Binomial[u, i]*
Sum[StirlingS2[g, j]*If[u == i, 1, j^(u - i)], {j, 0, g}], {i, k, u}]];
Table[Table[T[n, k], {k, 0, Ceiling[n/2]}], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 20 2015, after Alois P. Heinz, updated Jan 01 2021 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Oct 31 2006
STATUS
approved