login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n}, having exactly k blocks consisting only odd entries (0<=k<=ceiling(n/2)).
9

%I #20 Jan 01 2021 11:58:44

%S 1,0,1,1,1,1,3,1,5,8,2,9,26,15,2,52,101,45,5,130,385,287,70,5,855,

%T 1889,1143,238,15,2707,8295,7320,2475,335,15,19921,48382,35805,10540,

%U 1275,52,75771,240534,240082,100940,19505,1686,52,614866,1609551,1379753,512710

%N Triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n}, having exactly k blocks consisting only odd entries (0<=k<=ceiling(n/2)).

%C Row n has 1 + ceiling(n/2) terms. Row sums are the Bell numbers (A000110). T(2n,n) = T(2n+1,n+1) = A000110(n) (the Bell numbers). T(n,0) = A124421(n).

%H Alois P. Heinz, <a href="/A124420/b124420.txt">Rows n = 0..150, flattened</a>

%F The generating polynomial of row n is P[n](t)=Q[n](t,1,1), where the polynomials Q[n]=Q[n](t,s,x) are defined by Q[0]=1; Q[n]=t*dQ[n-1]/dt + x*dQ[n-1]/ds + x*dQ[n-1]/dx + t*Q[n-1] if n is odd and Q[n]=x*dQ[n-1]/dt + s*dQ[n-1]/ds + x*dQ[n-1]/dx + s*Q[n-1] if n is even.

%e T(4,1) = 8 because we have 13|24, 1|234, 124|3, 14|2|3, 1|2|34, 13|2|4, 1|23|4 and 12|3|4.

%e Triangle starts:

%e 1;

%e 0, 1;

%e 1, 1;

%e 1, 3, 1;

%e 5, 8, 2;

%e 9, 26, 15, 2;

%e 52, 101, 45, 5;

%p Q[0]:=1: for n from 1 to 13 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1],t)+x*diff(Q[n-1],s)+x*diff(Q[n-1],x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1],t)+s*diff(Q[n-1],s)+x*diff(Q[n-1],x)+s*Q[n-1]) fi od: for n from 0 to 13 do P[n]:=sort(subs({s=1,x=1},Q[n])) od: for n from 0 to 13 do seq(coeff(P[n],t,j),j=0..ceil(n/2)) od; # yields sequence in triangular form

%p # second Maple program:

%p T:= proc(n, k) local g, u; g:= floor(n/2); u:=ceil(n/2);

%p add(Stirling2(i, k)*binomial(u, i)*

%p add(Stirling2(g, j)*j^(u-i), j=0..g), i=k..u)

%p end:

%p seq(seq(T(n,k), k=0..ceil(n/2)), n=0..15); # _Alois P. Heinz_, Oct 23 2013

%t T[n_, k_] := Module[{g = Floor[n/2], u = Ceiling[n/2]},

%t Sum[StirlingS2[i, k]*Binomial[u, i]*

%t Sum[StirlingS2[g, j]*If[u == i, 1, j^(u - i)], {j, 0, g}], {i, k, u}]];

%t Table[Table[T[n, k], {k, 0, Ceiling[n/2]}], {n, 0, 15}] // Flatten (* _Jean-François Alcover_, May 20 2015, after _Alois P. Heinz_, updated Jan 01 2021 *)

%Y Cf. A000110, A124418, A124419, A124421, A124422, A124423.

%K nonn,tabf

%O 0,7

%A _Emeric Deutsch_, Oct 31 2006