OFFSET
0,5
COMMENTS
LINKS
Alois P. Heinz, Rows n = 0..200, flattened
FORMULA
The generating polynomial of row n is P[n](s)=Q[n](1,s,1), where the polynomials Q[n]=Q[n](t,s,x) are defined by Q[0]=1; Q[n]=t*dQ[n-1]/dt + x*dQ[n-1]/ds + x*dQ[n-1]/dx + t*Q[n-1] if n is odd and Q[n]=x*dQ[n-1]/dt + s*dQ[n-1]/ds + x*dQ[n-1]/dx + s*Q[n-1] if n is even.
EXAMPLE
T(4,1) = 8 because we have 134|2, 13|24, 14|2|3, 1|24|3, 1|2|34, 123|4, 1|23|4 and 12|3|4.
Triangle starts:
1;
1;
1, 1;
3, 2;
5, 8, 2;
22, 25, 5;
52, 101, 45, 5;
...
MAPLE
Q[0]:=1: for n from 1 to 13 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1], t)+x*diff(Q[n-1], s)+x*diff(Q[n-1], x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1], t)+s*diff(Q[n-1], s)+x*diff(Q[n-1], x)+s*Q[n-1]) fi od: for n from 0 to 13 do P[n]:=sort(subs({t=1, x=1}, Q[n])) od: for n from 0 to 13 do seq(coeff(P[n], s, j), j=0..floor(n/2)) od; # yields sequence in triangular form
# second Maple program:
T:= proc(n, k) local g, u; g:= floor(n/2); u:=ceil(n/2);
add(Stirling2(i, k)*binomial(g, i)*
add(Stirling2(u, j)*j^(g-i), j=0..u), i=k..g)
end:
seq(seq(T(n, k), k=0..floor(n/2)), n=0..15); # Alois P. Heinz, Oct 23 2013
MATHEMATICA
Unprotect[Power]; 0^0 = 1; T[n_, k_] := Module[{g = Floor[n/2], u = Ceiling[n/2]}, Sum[StirlingS2[i, k]*Binomial[g, i]*Sum[StirlingS2[u, j]*j^(g-i), {j, 0, u}], {i, k, g}]]; Table[Table[T[n, k], {k, 0, Floor[n/2]}], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Oct 31 2006
STATUS
approved