login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124422
Triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n}, having exactly k blocks consisting only even entries (0<=k<=floor(n/2)).
9
1, 1, 1, 1, 3, 2, 5, 8, 2, 22, 25, 5, 52, 101, 45, 5, 283, 423, 156, 15, 855, 1889, 1143, 238, 15, 5451, 9726, 5002, 916, 52, 19921, 48382, 35805, 10540, 1275, 52, 144074, 292223, 187515, 49155, 5400, 203, 614866, 1609551, 1379753, 512710, 89425, 7089, 203
OFFSET
0,5
COMMENTS
Row n has 1+floor(n/2) terms. Row sums are the Bell numbers (A000110). T(2n-1,n-1) = T(2n,n) = A000110(n) (the Bell numbers). T(n,0) = A124423(n).
LINKS
FORMULA
The generating polynomial of row n is P[n](s)=Q[n](1,s,1), where the polynomials Q[n]=Q[n](t,s,x) are defined by Q[0]=1; Q[n]=t*dQ[n-1]/dt + x*dQ[n-1]/ds + x*dQ[n-1]/dx + t*Q[n-1] if n is odd and Q[n]=x*dQ[n-1]/dt + s*dQ[n-1]/ds + x*dQ[n-1]/dx + s*Q[n-1] if n is even.
EXAMPLE
T(4,1) = 8 because we have 134|2, 13|24, 14|2|3, 1|24|3, 1|2|34, 123|4, 1|23|4 and 12|3|4.
Triangle starts:
1;
1;
1, 1;
3, 2;
5, 8, 2;
22, 25, 5;
52, 101, 45, 5;
...
MAPLE
Q[0]:=1: for n from 1 to 13 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1], t)+x*diff(Q[n-1], s)+x*diff(Q[n-1], x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1], t)+s*diff(Q[n-1], s)+x*diff(Q[n-1], x)+s*Q[n-1]) fi od: for n from 0 to 13 do P[n]:=sort(subs({t=1, x=1}, Q[n])) od: for n from 0 to 13 do seq(coeff(P[n], s, j), j=0..floor(n/2)) od; # yields sequence in triangular form
# second Maple program:
T:= proc(n, k) local g, u; g:= floor(n/2); u:=ceil(n/2);
add(Stirling2(i, k)*binomial(g, i)*
add(Stirling2(u, j)*j^(g-i), j=0..u), i=k..g)
end:
seq(seq(T(n, k), k=0..floor(n/2)), n=0..15); # Alois P. Heinz, Oct 23 2013
MATHEMATICA
Unprotect[Power]; 0^0 = 1; T[n_, k_] := Module[{g = Floor[n/2], u = Ceiling[n/2]}, Sum[StirlingS2[i, k]*Binomial[g, i]*Sum[StirlingS2[u, j]*j^(g-i), {j, 0, u}], {i, k, g}]]; Table[Table[T[n, k], {k, 0, Floor[n/2]}], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Oct 31 2006
STATUS
approved