login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124425
Number of partitions of the set {1,2,...,n} having no blocks with all entries of the same parity.
5
1, 0, 1, 1, 3, 7, 25, 79, 339, 1351, 6721, 31831, 179643, 979567, 6166105, 37852039, 262308819, 1784037031, 13471274401, 100285059751, 818288740923, 6604485845167, 57836113793305, 502235849694679, 4693153430067699, 43572170967012871, 432360767273547841
OFFSET
0,5
COMMENTS
Column 0 of A124424.
LINKS
FORMULA
a(n) = Q[n](0,0,1), where the polynomials Q[n]=Q[n](t,s,x) are defined by Q[0]=1; Q[n]=t*dQ[n-1]/dt + x*dQ[n-1]/ds + x*dQ[n-1]/dx + t*Q[n-1] if n is odd and Q[n]=x*dQ[n-1]/dt + s*dQ[n-1]/ds + x*dQ[n-1]/dx + s*Q[n-1] if n is even.
a(n) = Sum_{k=0..floor(n/2)} Stirling2(floor(n/2),k)*Stirling2(ceiling(n/2),k)*k!. - Alois P. Heinz, Oct 24 2013
EXAMPLE
a(4) = 3 because we have 1234, 14|23 and 12|34.
MAPLE
Q[0]:=1: for n from 1 to 27 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1], t)+x*diff(Q[n-1], s)+x*diff(Q[n-1], x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1], t)+s*diff(Q[n-1], s)+x*diff(Q[n-1], x)+s*Q[n-1]) fi od: seq(subs({t=0, s=0, x=1}, Q[n]), n=0..27);
# second Maple program:
a:= proc(n) local g, u; g:= floor(n/2); u:= ceil(n/2);
add(Stirling2(g, k)*Stirling2(u, k)*k!, k=0..g)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Oct 24 2013
MATHEMATICA
a[n_] := Module[{g=Floor[n/2], u=Ceiling[n/2]}, Sum[StirlingS2[g, k]*StirlingS2[u, k]*k!, {k, 0, g}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 26 2015, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Nov 01 2006
STATUS
approved