Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jun 24 2019 22:23:46
%S 1,0,1,1,3,7,25,79,339,1351,6721,31831,179643,979567,6166105,37852039,
%T 262308819,1784037031,13471274401,100285059751,818288740923,
%U 6604485845167,57836113793305,502235849694679,4693153430067699,43572170967012871,432360767273547841
%N Number of partitions of the set {1,2,...,n} having no blocks with all entries of the same parity.
%C Column 0 of A124424.
%H Alois P. Heinz, <a href="/A124425/b124425.txt">Table of n, a(n) for n = 0..400</a>
%F a(n) = Q[n](0,0,1), where the polynomials Q[n]=Q[n](t,s,x) are defined by Q[0]=1; Q[n]=t*dQ[n-1]/dt + x*dQ[n-1]/ds + x*dQ[n-1]/dx + t*Q[n-1] if n is odd and Q[n]=x*dQ[n-1]/dt + s*dQ[n-1]/ds + x*dQ[n-1]/dx + s*Q[n-1] if n is even.
%F a(n) = Sum_{k=0..floor(n/2)} Stirling2(floor(n/2),k)*Stirling2(ceiling(n/2),k)*k!. - _Alois P. Heinz_, Oct 24 2013
%e a(4) = 3 because we have 1234, 14|23 and 12|34.
%p Q[0]:=1: for n from 1 to 27 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1],t)+x*diff(Q[n-1],s)+x*diff(Q[n-1],x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1],t)+s*diff(Q[n-1],s)+x*diff(Q[n-1],x)+s*Q[n-1]) fi od: seq(subs({t=0,s=0,x=1},Q[n]),n=0..27);
%p # second Maple program:
%p a:= proc(n) local g, u; g:= floor(n/2); u:= ceil(n/2);
%p add(Stirling2(g, k)*Stirling2(u, k)*k!, k=0..g)
%p end:
%p seq(a(n), n=0..30); # _Alois P. Heinz_, Oct 24 2013
%t a[n_] := Module[{g=Floor[n/2], u=Ceiling[n/2]}, Sum[StirlingS2[g, k]*StirlingS2[u, k]*k!, {k, 0, g}]]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, May 26 2015, after _Alois P. Heinz_ *)
%Y Cf. A000110, A124418, A124419, A124420, A124421, A124422, A124423, A124424.
%K nonn
%O 0,5
%A _Emeric Deutsch_, Nov 01 2006