login
A284367
Square array T(n,k) = number of separable polynomials of degree <= k in Z/n[x], n>=1, k>=1, read by antidiagonals.
0
1, 1, 3, 1, 5, 8, 1, 9, 20, 12, 1, 17, 56, 40, 24, 1, 33, 164, 144, 104, 24, 1, 65, 488, 544, 504, 100, 48, 1, 129, 1460, 2112, 2504, 504, 300, 48, 1, 257, 4376, 8320, 12504, 2788, 2064, 320, 72, 1, 513, 13124, 33024, 62504, 16104, 14412, 2304, 540, 72
OFFSET
1,3
LINKS
Leonard Carlitz, The arithmetic of polynomials in a Galois field, Amer. J. Math., 54(1):39-50, January 1932.
Jason K. C. Polak, Counting Separable Polynomials in Z/n[x], arXiv:1703.07064 [math.RA], 2016.
EXAMPLE
1, 1, 1, 1, 1, ...
3, 5, 9, 17, 33, ...
8, 20, 56, 164, 488, ...
12, 40, 144, 544, 2112, ...
24, 104, 504, 2504, 12504, ...
24, 100, 504, 2788, 16104, ...
MATHEMATICA
T[n_, k_] := With[{f = FactorInteger[n][[All, 1]]}, EulerPhi[n] n^k Times @@ (1 + 1/f^k)]; T[1, _] = 1;
Table[T[n-k+1, k], {n, 1, 10}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Sep 28 2018, from PARI *)
PROG
(PARI) T(n, k) = my(f=factor(n)); eulerphi(n)*n^k*prod(i=1, #f~, 1+1/f[i, 1]^k);
CROSSREFS
Cf. A007434 (1st column).
Sequence in context: A116647 A063858 A209831 * A280328 A280384 A124420
KEYWORD
nonn,tabl
AUTHOR
Michel Marcus, Mar 25 2017
STATUS
approved