login
A116647
Triangle of number of partitions that fit in an n X n box (but not in an (n-1) X (n-1) box) with Durfee square k.
2
1, 3, 1, 5, 8, 1, 7, 27, 15, 1, 9, 64, 84, 24, 1, 11, 125, 300, 200, 35, 1, 13, 216, 825, 1000, 405, 48, 1, 15, 343, 1911, 3675, 2695, 735, 63, 1, 17, 512, 3920, 10976, 12740, 6272, 1232, 80, 1, 19, 729, 7344, 28224, 47628, 37044, 13104, 1944, 99, 1, 21, 1000, 12825
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Durfee Square.
FORMULA
T(n,k) = binomial(n,k)^2 - binomial(n-1,k)^2.
EXAMPLE
Triangle begins
1;
3, 1;
5, 8, 1;
7, 27, 15, 1;
9, 64, 84, 24, 1;
11, 125, 300, 200, 35, 1;
MATHEMATICA
Table[Binomial[n, k]^2 - Binomial[n - 1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* G. C. Greubel, Nov 20 2017 *)
PROG
(PARI) for(n=1, 10, for(k=0, n, print1(binomial(n, k)^2 - binomial(n-1, k)^2, ", "))) \\ G. C. Greubel, Nov 20 2017
CROSSREFS
Cf. A008459; row sums A051924.
Sequence in context: A208760 A340156 A340242 * A063858 A209831 A284367
KEYWORD
easy,nonn,tabl
AUTHOR
STATUS
approved