OFFSET
0,5
COMMENTS
LINKS
Alois P. Heinz, Rows n = 0..614, flattened
FORMULA
G.f.: G(t,x) = product(1+x^j+tx^(2j)+x^(3j)/(1-x^j), j=1..infinity).
EXAMPLE
T(6,2) = 1 because [2,2,1,1] is the only partition of 6 with 2 doubletons.
Triangle starts:
1;
1;
1, 1;
3;
3, 2;
5, 2;
8, 2, 1;
10, 5;
13, 8, 1;
MAPLE
g:=product(1+x^j+t*x^(2*j)+x^(3*j)/(1-x^j), j=1..35): gser:=simplify(series(g, x=0, 35)): P[0]:=1: for n from 1 to 24 do P[n]:=coeff(gser, x^n) od: for n from 0 to 24 do seq(coeff(P[n], t, j), j=0..degree(P[n])) od; # sequence given in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Feb 20 2006
STATUS
approved