login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212386
Number of Dyck n-paths all of whose ascents have lengths equal to 1 (mod 6).
3
1, 1, 1, 1, 1, 1, 1, 2, 9, 37, 121, 331, 793, 1718, 3454, 6646, 12841, 26589, 61813, 158918, 426401, 1134431, 2914055, 7171539, 16967745, 39008002, 88529366, 202057561, 471422866, 1133448790, 2799775102, 7026467132, 17684574313, 44192085565, 109081884957
OFFSET
0,8
COMMENTS
Lengths of descents are unrestricted.
FORMULA
G.f. satisfies: A(x) = 1+x*A(x)/(1-(x*A(x))^6).
a(n) ~ s^2 / (n^(3/2) * r^(n-1/2) * sqrt(2*Pi*p*(s-1)*(1+s/(1+p*(s-1))))), where p = 6 and r = 0.3925132712580446244..., s = 1.876653786643058101... are roots of the system of equations r = p*(s-1)^2 / (s*(1-p+p*s)), (r*s)^p = (s-1-r*s)/(s-1). - Vaclav Kotesovec, Jul 16 2014
a(n) = Sum_{k=0..n} (binomial(5*k-4*n-1,n-k)*binomial(n+1,6*k-5*n))/(n+1). - Vladimir Kruchinin, Mar 05 2016
EXAMPLE
a(0) = 1: the empty path.
a(1) = 1: UD.
a(7) = 2: UDUDUDUDUDUDUD, UUUUUUUDDDDDDD.
a(8) = 9: UDUDUDUDUDUDUDUD, UDUUUUUUUDDDDDDD, UUUUUUUDDDDDDDUD, UUUUUUUDDDDDDUDD, UUUUUUUDDDDDUDDD, UUUUUUUDDDDUDDDD, UUUUUUUDDDUDDDDD, UUUUUUUDDUDDDDDD, UUUUUUUDUDDDDDDD.
MAPLE
b:= proc(x, y, u) option remember;
`if`(x<0 or y<x, 0, `if`(x=0 and y=0, 1, b(x, y-1, true)+
`if`(u, add (b(x-(6*t+1), y, false), t=0..(x-1)/6), 0)))
end:
a:= n-> b(n$2, true):
seq(a(n), n=0..40);
# second Maple program
a:= n-> coeff(series(RootOf(A=1+x*A/(1-(x*A)^6), A), x, n+1), x, n):
seq(a(n), n=0..40);
MATHEMATICA
a[n_] := Sum[Binomial[5k-4n-1, n-k]*Binomial[n+1, 6k-5n], {k, 0, n}]/(n+1);
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 03 2017, after Vladimir Kruchinin *)
PROG
(Maxima)
a(n):=sum(binomial(5*k-4*n-1, n-k)*binomial(n+1, 6*k-5*n), k, 0, n)/(n+1); /* Vladimir Kruchinin, Mar 05 2016 */
CROSSREFS
Column k=6 of A212382.
Sequence in context: A306852 A275425 A373912 * A333883 A373911 A373910
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 12 2012
STATUS
approved