login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of Dyck n-paths all of whose ascents have lengths equal to 1 (mod 6).
3

%I #26 Apr 15 2017 00:46:41

%S 1,1,1,1,1,1,1,2,9,37,121,331,793,1718,3454,6646,12841,26589,61813,

%T 158918,426401,1134431,2914055,7171539,16967745,39008002,88529366,

%U 202057561,471422866,1133448790,2799775102,7026467132,17684574313,44192085565,109081884957

%N Number of Dyck n-paths all of whose ascents have lengths equal to 1 (mod 6).

%C Lengths of descents are unrestricted.

%H Alois P. Heinz, <a href="/A212386/b212386.txt">Table of n, a(n) for n = 0..1000</a>

%H Vaclav Kotesovec, <a href="http://oeis.org/A212382/a212382.pdf">Asymptotic of subsequences of A212382</a>

%F G.f. satisfies: A(x) = 1+x*A(x)/(1-(x*A(x))^6).

%F a(n) ~ s^2 / (n^(3/2) * r^(n-1/2) * sqrt(2*Pi*p*(s-1)*(1+s/(1+p*(s-1))))), where p = 6 and r = 0.3925132712580446244..., s = 1.876653786643058101... are roots of the system of equations r = p*(s-1)^2 / (s*(1-p+p*s)), (r*s)^p = (s-1-r*s)/(s-1). - _Vaclav Kotesovec_, Jul 16 2014

%F a(n) = Sum_{k=0..n} (binomial(5*k-4*n-1,n-k)*binomial(n+1,6*k-5*n))/(n+1). - _Vladimir Kruchinin_, Mar 05 2016

%e a(0) = 1: the empty path.

%e a(1) = 1: UD.

%e a(7) = 2: UDUDUDUDUDUDUD, UUUUUUUDDDDDDD.

%e a(8) = 9: UDUDUDUDUDUDUDUD, UDUUUUUUUDDDDDDD, UUUUUUUDDDDDDDUD, UUUUUUUDDDDDDUDD, UUUUUUUDDDDDUDDD, UUUUUUUDDDDUDDDD, UUUUUUUDDDUDDDDD, UUUUUUUDDUDDDDDD, UUUUUUUDUDDDDDDD.

%p b:= proc(x, y, u) option remember;

%p `if`(x<0 or y<x, 0, `if`(x=0 and y=0, 1, b(x, y-1, true)+

%p `if`(u, add (b(x-(6*t+1), y, false), t=0..(x-1)/6), 0)))

%p end:

%p a:= n-> b(n$2, true):

%p seq(a(n), n=0..40);

%p # second Maple program

%p a:= n-> coeff(series(RootOf(A=1+x*A/(1-(x*A)^6), A), x, n+1), x, n):

%p seq(a(n), n=0..40);

%t a[n_] := Sum[Binomial[5k-4n-1, n-k]*Binomial[n+1, 6k-5n], {k, 0, n}]/(n+1);

%t Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Apr 03 2017, after _Vladimir Kruchinin_ *)

%o (Maxima)

%o a(n):=sum(binomial(5*k-4*n-1, n-k)*binomial(n+1, 6*k-5*n), k, 0, n)/(n+1); /* _Vladimir Kruchinin_, Mar 05 2016 */

%Y Column k=6 of A212382.

%K nonn

%O 0,8

%A _Alois P. Heinz_, May 12 2012