Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Sep 03 2022 10:44:24
%S 1,1,3,14,80,468,2268,10224,313632,9849600,21954240,-8894136960,
%T -105857556480,20609598562560,650835095904000,-80028503341516800,
%U -5018759207362252800,503681435808239001600,56090762228110443724800
%N Related to Clebsch-Gordan formulas.
%H G. C. Greubel, <a href="/A027614/b027614.txt">Table of n, a(n) for n = 1..280</a>
%H Allan Adler, <a href="/A027614/a027614.tex">Definition (plain tex file)</a>
%H J. Cigler, <a href="http://homepage.univie.ac.at/Johann.Cigler/preprints/q-pol.pdf">Some results and conjectures about a class of q-polynomials with simple moments</a>, 2014.
%H Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a027/A027614.java">Java program</a> (github)
%F a(n) = (-1)^(n-1)*A179320(n)/2. - _G. C. Greubel_, Aug 23 2022
%F a(n) = (-1)^(n+1) * n! * b(n), where b(n) = (-1/(2*(n-1))) * Sum_{j=2..2*floor(n/2)} A123521(n, j)*b(n-j+1), b(1) = 1. - _G. C. Greubel_, Sep 01 2022
%t T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==1, 2*(n-1), T[n-2, k-2] + Binomial[2*n-k-1, 2*n -2*k-1] ]]; (* T = A123521 *)
%t b[n_]:= b[n]= If[n==1, 1, (-1/(2*(n-1)))*Sum[b[n-j+1]*T[n,j], {j,2,2*Floor[n/2]}]];
%t A027614[n_]:= (-1)^(n+1)*n!*b[n];
%t Table[A027614[n], {n, 40}] (* _G. C. Greubel_, Sep 01 2022 *)
%o (PARI) {a(n)=local(A=2*x, B); for(m=2, n, B=(1-x)/(1+x+O(x^(n+3)))*subst(A, x, x/(1-x+O(x^(n+3)))^2); A=A-polcoeff(B, m+1)*x^m/(m-1)/2); (-1)^(n-1)*n!*polcoeff(A, n)/2};
%o vector(20, n, a(n)) \\ _G. C. Greubel_, Aug 23 2022
%o (SageMath)
%o @CachedFunction
%o def T(n,k): # T = A123521
%o if (k==0): return 1
%o elif (k==1): return 2*(n-1)
%o else: return T(n-2, k-2) + binomial(2*n-k-1, 2*n-2*k-1)
%o @CachedFunction
%o def b(n):
%o if (n==1): return 1
%o else: return (-1/(2*(n-1)))*sum(T(n,j)*b(n-j+1) for j in (2..2*floor(n/2)))
%o def A027614(n): return (-1)^(n+1)*factorial(n)*b(n)
%o [A027614(n) for n in (1..40)] # _G. C. Greubel_, Sep 01 2022
%Y Cf. A123521, A179320.
%K sign
%O 1,3
%A Allan Adler (ara(AT)zurich.ai.mit.edu), Dec 15 1997