login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of labeled rooted trees of nonempty sets with n points. (Each node is a set of 1 or more points.)
20

%I #47 Apr 18 2017 07:03:22

%S 1,3,16,133,1521,22184,393681,8233803,198342718,5408091155,

%T 164658043397,5537255169582,203840528337291,8153112960102283,

%U 352079321494938344,16325961781591781401,809073412162081974237,42674870241038732398720,2386963662244981472850709

%N Number of labeled rooted trees of nonempty sets with n points. (Each node is a set of 1 or more points.)

%H Vincenzo Librandi, <a href="/A048802/b048802.txt">Table of n, a(n) for n = 1..200</a>

%H F. Chapoton, F. Hivert, J.-C. Novelli, <a href="http://arxiv.org/abs/1307.0092">A set-operad of formal fractions and dendriform-like sub-operads</a>, arXiv preprint arXiv:1307.0092 [math.CO], 2013.

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=861">Encyclopedia of Combinatorial Structures 861</a>

%H B. R. Jones, <a href="http://summit.sfu.ca/item/14554">On tree hook length formulas, Feynman rules and B-series</a>, Master's thesis, Simon Fraser University, 2014.

%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>

%F E.g.f.: B(exp(x)-1) where B is e.g.f. of A000169.

%F E.g.f.: Series_Reversion( log(1 + x*exp(-x)) ). - _Paul D. Hanna_, Jan 24 2016

%F a(n) = Sum_{k=1..n} Stirling2(n, k)*k^(k-1). - _Vladeta Jovovic_, Sep 17 2003

%F Stirling transform of A000169. - _Michael Somos_, Jun 09 2012

%F a(n) ~ sqrt(1+exp(1)) * n^(n-1) / (exp(n) * (log(1+exp(-1)))^(n-1/2)). - _Vaclav Kotesovec_, Feb 17 2014

%e G.f. = x + 3*x^2 + 16*x^3 + 133*x^4 + 1521*x^5 + 22184*x^6 + 393681*x^7 + ...

%t nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[ ComposeSeries[ Series[t,{x,0,nn}],Series[Exp[x]-1 ,{x,0,nn}]],x] (* _Geoffrey Critzer_, Sep 16 2012 *)

%o (PARI) {a(n) = sum( k=1, n, stirling(n, k, 2) * k^(k - 1))}; /* _Michael Somos_, Jun 09 2012 */

%o (PARI) {a(n) = n! * polcoeff( serreverse( log(1 + x*exp(-x +x*O(x^n))) ),n)}

%o for(n=1,30,print1(a(n),", ")) \\ _Paul D. Hanna_, Jan 24 2016

%Y Cf. A036249, A038052, A058863, A052807.

%K nonn

%O 1,2

%A _Christian G. Bower_, Mar 15 1999