Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #45 Sep 08 2024 08:00:35
%S 0,1,3,17,146,1704,25284,456224,9702776,237711888,6593032560,
%T 204212077992,6986942528400,261700394006232,10650713784774504,
%U 468007296229553880,22083086552247101184,1113646609708909274880
%N Expansion of e.g.f. -LambertW(log(1-x)).
%C Previous name was: A simple grammar.
%C E.g.f. of A052813 equals exp(A(x)) = -A(x)/log(1-x). a(n) = n!*Sum_{k=0..n-1} A052813(k)/k!/(n-k). - _Paul D. Hanna_, Jul 19 2006
%H G. C. Greubel, <a href="/A052807/b052807.txt">Table of n, a(n) for n = 0..375</a>
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=769">Encyclopedia of Combinatorial Structures 769</a>
%F a(n) = Sum_{k=1..n} |Stirling1(n, k)|*k^(k-1). - _Vladeta Jovovic_, Sep 17 2003
%F E.g.f. satisfies: A(x) = 1/(1-x)^A(x). - _Paul D. Hanna_, Jul 19 2006
%F a(n) ~ n^(n-1)*exp((exp(-1)-1)*n+1/2) / (exp(exp(-1))-1)^(n-1/2). - _Vaclav Kotesovec_, Jul 09 2013
%F E.g.f.: Series_Reversion( 1 - exp(-x*exp(-x)) ). - _Seiichi Manyama_, Sep 08 2024
%e E.g.f.: A(x) = x + 3*x^2/2! + 17*x^3/3! + 146*x^4/4! +...
%e A(x)/exp(A(x)) = -log(1-x) = x + 1/2*x^2 + 1/3*x^3 + 1/4*x^4 +...
%p spec := [S,{B=Cycle(Z),C=Set(S),S=Prod(C,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
%t max = 17; se = Series[-ProductLog[-Log[-(-1 + x)^(-1)]] , {x, 0, max}]; Join[{0}, (CoefficientList[se, x] // DeleteCases[#, 0] &) * Range[max]!] (* _Jean-François Alcover_, Jun 24 2013 *)
%t CoefficientList[Series[-LambertW[-Log[-1/(-1 + x)]], {x,0,50}], x]*
%t Range[0,50]! (* _G. C. Greubel_, Jun 18 2017 *)
%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1/(1-x+x*O(x^n))^A);n!*polcoeff(log(A),n)} \\ _Paul D. Hanna_, Jul 19 2006
%o (PARI) x = 'x + O('x^30); concat(0, Vec(serlaplace(-lambertw(log(1-x))))) \\ _Michel Marcus_, Jun 19 2017
%Y Cf. A006963, A048802, A052813 (exp(A(x))), A277489.
%K easy,nonn
%O 0,3
%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000
%E New name using e.g.f. by _Vaclav Kotesovec_, Oct 18 2013