login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052813
Expansion of e.g.f.: LambertW(log(1-x))/log(1-x).
18
1, 1, 4, 27, 260, 3280, 51414, 965762, 21175496, 531317520, 15021531840, 472654558992, 16385500397496, 620612495460048, 25500923655523848, 1129909190812470840, 53705490284841870144, 2725878142900911376896
OFFSET
0,3
COMMENTS
Previous name was: A simple grammar.
Given e.g.f. A(x), log(A(x)) = -log(1-x)*A(x) equals e.g.f. of A052807. - Paul D. Hanna, Jul 19 2006
LINKS
FORMULA
a(n) = Sum_{k=0..n} |Stirling1(n, k)|*(k+1)^(k-1). - Vladeta Jovovic, Nov 12 2003
E.g.f. A(x) satisfies: A(x) = 1/(1-x)^A(x). - Paul D. Hanna, Jul 19 2006
E.g.f.: Sum_{n>=0} (n+1)^(n-1)*(-log(1-x))^n/n!. - Paul D. Hanna, Jun 22 2009
E.g.f. satisfies: A(x) = Sum_{n>=0} x^n/n! * Sum_{k=0..n} |Stirling1(n, k)|*A(x)^k. - Paul D. Hanna, Jan 16 2013
a(n) ~ n^(n-1) * exp(3/2+n*exp(-1)-n) / (exp(exp(-1))-1)^(n-1/2). - Vaclav Kotesovec, Sep 30 2013
E.g.f. satisfies: A(x) = Sum_{n>=0} x^n/n! * Product_{k=0..n-1} (A(x) + k). - Paul D. Hanna, Oct 26 2015
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 27*x^3/3! + 260*x^4/4! +...
Log(A(x))/A(x) = -log(1-x) = x + 1/2*x^2 + 1/3*x^3 + 1/4*x^4 +...
MAPLE
spec := [S, {C=Cycle(Z), S=Set(B), B=Prod(C, S)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[1/Log[1-x]*LambertW[Log[1-x]], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1/(1-x+x*O(x^n))^A); n!*polcoeff(A, n)} \\ Paul D. Hanna, Jul 19 2006
(PARI) {a(n)=n!*polcoeff(sum(m=0, n, (m+1)^(m-1)/m!*(-log(1-x+x*O(x^n)))^m), n)} \\ Paul D. Hanna, Jun 22 2009
(PARI) {a(n) = my(A=1+x); for(i=1, n, A = sum(m=0, n, x^m/m! * prod(k=0, m-1, A + k) +x*O(x^n)) ); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Oct 26 2015
(PARI) x='x+O('x^30); Vec(serlaplace((1/log(1-x))*lambertw(log(1-x)))) \\ G. C. Greubel, Feb 19 2018
CROSSREFS
Cf. A052807 (log(A(x))).
Sequence in context: A362701 A376107 A177379 * A218653 A359461 A121353
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
New name using e.g.f. from Vaclav Kotesovec, Sep 30 2013
STATUS
approved