login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376107
Expansion of e.g.f. LambertW(x / (1 - 3*x)).
1
0, 1, 4, 27, 260, 3265, 50634, 935263, 20053816, 489677697, 13416375950, 407609962111, 13600700469828, 494442286466401, 19452778285314178, 823489845351967935, 37323572563440199664, 1803303384581598518785, 92523649833821902792086
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f. A(x) satisfies A(x) = x * (3*A(x) + exp(-A(x))).
E.g.f.: Series_Reversion( x / (3*x + exp(-x)) ).
a(n) = n! * Sum_{k=1..n} 3^(n-k) * (-k)^(k-1) * binomial(n-1,k-1)/k!.
MATHEMATICA
nmax=20; CoefficientList[InverseSeries[Series[x / (3*x + E^(-x)), {x, 0, nmax}], x], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 20 2024 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(lambertw(x/(1-3*x)))))
(PARI) a(n) = n!*sum(k=1, n, 3^(n-k)*(-k)^(k-1)*binomial(n-1, k-1)/k!);
CROSSREFS
Cf. A376101.
Sequence in context: A302836 A301335 A362701 * A177379 A052813 A218653
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 10 2024
STATUS
approved