login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376105
Expansion of e.g.f. -LambertW(-3*x / (1 + x))/3.
1
0, 1, 4, 51, 948, 24465, 802098, 31975335, 1501332696, 81158916897, 4964709729510, 339064260058359, 25573087919369268, 2111171271497336529, 189350082996145020810, 18334276660240212722535, 1906166280260835065912112, 211792366386481088490433857
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f. A(x) satisfies A(x) = x * (-A(x) + exp(3*A(x))).
E.g.f.: Series_Reversion( x / (-x + exp(3*x)) ).
a(n) = n! * Sum_{k=1..n} (-1)^(n-k) * (3*k)^(k-1) * binomial(n-1,k-1)/k!.
a(n) ~ (3-exp(-1))^(n + 1/2) * n^(n-1) / 3^(3/2). - Vaclav Kotesovec, Sep 11 2024
PROG
(PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(-3*x/(1+x))/3)))
(PARI) a(n) = n!*sum(k=1, n, (-1)^(n-k)*(3*k)^(k-1)*binomial(n-1, k-1)/k!);
CROSSREFS
Cf. A376099.
Sequence in context: A328931 A343572 A336608 * A349653 A235325 A230401
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 10 2024
STATUS
approved