login
A376105
Expansion of e.g.f. -LambertW(-3*x / (1 + x))/3.
1
0, 1, 4, 51, 948, 24465, 802098, 31975335, 1501332696, 81158916897, 4964709729510, 339064260058359, 25573087919369268, 2111171271497336529, 189350082996145020810, 18334276660240212722535, 1906166280260835065912112, 211792366386481088490433857
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f. A(x) satisfies A(x) = x * (-A(x) + exp(3*A(x))).
E.g.f.: Series_Reversion( x / (-x + exp(3*x)) ).
a(n) = n! * Sum_{k=1..n} (-1)^(n-k) * (3*k)^(k-1) * binomial(n-1,k-1)/k!.
a(n) ~ (3-exp(-1))^(n + 1/2) * n^(n-1) / 3^(3/2). - Vaclav Kotesovec, Sep 11 2024
PROG
(PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(-3*x/(1+x))/3)))
(PARI) a(n) = n!*sum(k=1, n, (-1)^(n-k)*(3*k)^(k-1)*binomial(n-1, k-1)/k!);
CROSSREFS
Cf. A376099.
Sequence in context: A328931 A343572 A336608 * A349653 A235325 A230401
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 10 2024
STATUS
approved