login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376099
Expansion of e.g.f. -LambertW(-3*x / (1 - x))/3.
2
0, 1, 8, 123, 2940, 96465, 4035438, 205395687, 12320780328, 851216818977, 66565617543450, 5812559883272439, 560602050420898764, 59186681025383491281, 6789351417468526481526, 840843424588323640992615, 111820607202879512913388752, 15892724010727366554445999425
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f. A(x) satisfies A(x) = x * (A(x) + exp(3*A(x))).
E.g.f.: Series_Reversion( x / (x + exp(3*x)) ).
a(n) = n! * Sum_{k=1..n} (3*k)^(k-1) * binomial(n-1,k-1)/k!.
a(n) ~ (3 + exp(-1))^(n + 1/2) * n^(n-1) / 3^(3/2). - Vaclav Kotesovec, Sep 10 2024
PROG
(PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(-3*x/(1-x))/3)))
(PARI) a(n) = n!*sum(k=1, n, (3*k)^(k-1)*binomial(n-1, k-1)/k!);
CROSSREFS
Sequence in context: A239755 A264408 A364985 * A120957 A302356 A367122
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 10 2024
STATUS
approved