login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264408
E.g.f. satisfies: A(x) = 1/(1-x)^(A(x)^3).
5
1, 1, 8, 123, 2880, 91380, 3670422, 178637046, 10220188584, 672297233904, 49998246211440, 4148400045354048, 379922492043352728, 38069325641907527760, 4143052833221549219112, 486645149764644576491160, 61364015736691449905270208, 8267876533375590035644494336, 1185420892076469924434688605760
OFFSET
0,3
LINKS
FORMULA
E.g.f. also satisfies:
(1) A(x) = ( LambertW(3*log(1-x)) / (3*log(1-x)) )^(1/3).
(2) A(x) = Sum_{n>=0} (3*n+1)^(n-1) * (-log(1-x))^n / n!.
(3) A(x) = Sum_{n>=0} x^n/n! * Product_{k=0..n-1} (A(x)^3 + k).
(4) A(x) = Sum_{n>=0} x^n/n! * Sum_{k=0..n} |Stirling1(n, k)| * A(x)^(3*k).
a(n) = Sum_{k=0..n} |Stirling1(n, k)| * (3*k+1)^(k-1).
a(n) ~ n^(n-1) / (sqrt(3) * exp(n - n*exp(-1)/3 - 5/6) * (exp(exp(-1)/3) - 1)^(n-1/2)). - Vaclav Kotesovec, Nov 18 2015
EXAMPLE
E.g.f.: A(x) = 1 + x + 8*x^2/2! + 123*x^3/3! + 2880*x^4/4! + 91380*x^5/5! + 3670422*x^6/6! + 178637046*x^7/7! + 10220188584*x^8/8! +...
where A(x) = 1/(1-x)^(A(x)^3).
From a LambertW identity,
A(x) = 1 - log(1-x) + 7*log(1-x)^2/2! - 10^2*log(1-x)^3/3! + 13^3*log(1-x)^4/4! - 16^4*log(1-x)^5/5! + 19^5*log(1-x)^6/6! +...
Also,
A(x) = 1 + x*A(x)^3 + x^2*A(x)^3*(A(x)^3+1)/2! + x^3*A(x)^3*(A(x)^3+1)*(A(x)^3+2)/3! + x^4*A(x)^3*(A(x)^3+1)*(A(x)^3+2)*(A(x)^3+3)/4! +...
MATHEMATICA
Table[Sum[Abs[StirlingS1[n, k]] * (3*k+1)^(k-1), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 18 2015 *)
PROG
(PARI) {a(n) = my(A=1+x); for(i=1, n, A = sum(m=0, n, x^m/m! * prod(k=0, m-1, A^3 + k) +x*O(x^n)) ); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) a(n) = sum(k=0, n, abs(stirling(n, k, 1))*(3*k+1)^(k-1));
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 18 2015
STATUS
approved