|
|
A264406
|
|
Smallest palindrome of each distinct decimal type (A002113) in increasing order.
|
|
4
|
|
|
1, 11, 101, 111, 1001, 1111, 10001, 10101, 10201, 11011, 11111, 100001, 101101, 102201, 110011, 111111, 1000001, 1001001, 1002001, 1010101, 1011101, 1012101, 1020201, 1021201, 1022201, 1023201, 1100011, 1101011, 1102011, 1110111, 1111111, 10000001, 10011001, 10022001, 10100101, 10111101, 10122101, 10200201, 10211201, 10222201, 10233201, 11000011, 11011011, 11022011, 11100111, 11111111
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Only positive palindromes are considered.
The numbers N(n) of distinct types of n-digit palindromes, for n=1,2,..., are 1,1,2,2,5,5,15,15,... (A164904, n>=1). It is easy to see that N(2*n-1)=N(2*n), n>=1.
|
|
LINKS
|
|
|
EXAMPLE
|
The type corresponding to the term 1021201 has the form XYZXZYX, where X,Y,Z are distinct decimal digits, X>0.
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|