The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A138010 a(n) is the number of positive divisors of n that divide d(n), where d(n) is the number of positive divisors of n, A000005(n); a(n) also equals d(gcd(n, d(n))). 4
 1, 2, 1, 1, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 6, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 2, 2, 1, 2, 1, 4, 1, 2, 1, 6, 1, 2, 1, 4, 1, 4, 1, 2, 1, 2, 1, 6, 1, 2, 2, 1, 1, 2, 1, 4, 1, 2, 1, 6, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 FORMULA a(n) = A000005(A009191(n)). [From the alternative description.] - Antti Karttunen, May 25 2017 EXAMPLE 12 has 6 divisors (1,2,3,4,6,12). Those divisors of 12 that divide 6 are 1,2,3,6. Since there are 4 of these, then a(12) = 4. MAPLE with(numtheory): a:=proc(n) local div, c, j: div:=divisors(n): c:=0: for j to tau(n) do if `mod`(tau(n), div[j])=0 then c:=c+1 else end if end do: c end proc: seq(a(n), n=1..90); # Emeric Deutsch, Mar 02 2008 MATHEMATICA Table[Length[Select[Divisors[n], Mod[Length[Divisors[n]], # ] == 0 &]], {n, 1, 100}] (* Stefan Steinerberger, Feb 29 2008 *) Table[Count[DivisorSigma[0, n]/Divisors[n], _?IntegerQ], {n, 120}] (* Harvey P. Dale, May 31 2019 *) PROG (PARI) A138010(n) = sumdiv(n, d, if(!(numdiv(n)%d), 1, 0)); \\ Antti Karttunen, May 25 2017 (Scheme) (define (A138010 n) (A000005 (gcd n (A000005 n)))) ;; Antti Karttunen, May 25 2017 (Python) from sympy import divisors, divisor_count def a(n): return sum([ 1*(divisor_count(n)%d==0) for d in divisors(n)]) # Indranil Ghosh, May 25 2017 (MAGMA) [#Divisors( Gcd(n, #Divisors(n))):n in [1..120]]; // Marius A. Burtea, Aug 03 2019 CROSSREFS Cf. A000005, A009191, A124315, A138011, A138012. Sequence in context: A114536 A330692 A345992 * A206487 A209062 A167204 Adjacent sequences:  A138007 A138008 A138009 * A138011 A138012 A138013 KEYWORD nonn AUTHOR Leroy Quet, Feb 27 2008 EXTENSIONS More terms from Stefan Steinerberger and Emeric Deutsch, Feb 29 2008 Further extended (to 120 terms) by Antti Karttunen, May 25 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 16 07:19 EDT 2021. Contains 347469 sequences. (Running on oeis4.)