OFFSET
0,4
FORMULA
a(n) = (-1)^n + Sum_{k=0..n-1} 2^k * a(k) * a(n-k-1).
a(n) ~ c * 2^(n*(n-1)/2), where c = 0.658663398267275680037834076118178644268023291808559507713140088111498143... - Vaclav Kotesovec, Nov 02 2021
MATHEMATICA
nmax = 16; A[_] = 0; Do[A[x_] = 1/((1 + x) (1 - x A[2 x])) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[n_] := a[n] = (-1)^n + Sum[2^k a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 16}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 02 2021
STATUS
approved