login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348858
G.f. A(x) satisfies: A(x) = 1 / ((1 - x) * (1 - x * A(3*x))).
3
1, 2, 9, 103, 3101, 261192, 64285189, 47059492688, 103060910397021, 676492249628112382, 13317427360663454672669, 786420726604930579016189223, 139314431838014895142151741877241, 74037818920801629179455290512454633872, 118040419689979917511971388549088825283510249
OFFSET
0,2
FORMULA
a(n) = 1 + Sum_{k=0..n-1} 3^k * a(k) * a(n-k-1).
a(n) ~ c * 3^(n*(n-1)/2), where c = 4.508135635010167805309616576501854361005320931661829410476785686203732753... - Vaclav Kotesovec, Nov 02 2021
MATHEMATICA
nmax = 14; A[_] = 0; Do[A[x_] = 1/((1 - x) (1 - x A[3 x])) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[n_] := a[n] = 1 + Sum[3^k a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 14}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 02 2021
STATUS
approved